Math, asked by sunainagupta1983, 1 month ago

ANSWER THIS QUESTION TO GET THE BRAINLIEST.

Attachments:

Answers

Answered by Anonymous
23

Given :-

 \dfrac{3 +  \sqrt{8} }{3 -  \sqrt{8} }  +  \dfrac{3 -  \sqrt{8} }{3 +  \sqrt{8} }  = a + b \sqrt{8}

To find :-

  • Value of a, b

SOLUTION:-

Take L.C.M to the denominators

 \dfrac{(3 +  \sqrt{8})(3 +  \sqrt{8}) + (3 -  \sqrt{8})(3 -  \sqrt{8} )   }{(3 -  \sqrt{8})(3 +  \sqrt{8})  }

 \dfrac{(3 +  \sqrt{8}) {}^{2}  + (3 -  \sqrt{8}  ) {}^{2} }{(3 +  \sqrt{8} )(3 -  \sqrt{8}) }

Numerator is in form of (a+b)² +(a-b)² = 2a² + 2b²

Denominator in form of (a+b)(a-b) = a²-b²

By applying these formulae we get,

 \dfrac{2(3) {}^{2}  + 2( \sqrt{8}) {}^{2}  }{(3) {}^{2} - ( \sqrt{8}) {}^{2}   }

 \dfrac{2(9) + 2(8)}{9 - 8}

18 + 16

34

34 = a + b \sqrt{8}

17 + 17 = a + b \sqrt{8}

Multiply and divide by 8

 (\dfrac{17}{8}  +  \dfrac{17}{8} ) \sqrt{8} \times  \sqrt{8}   = a +  b \sqrt{8}

 \dfrac{17 \sqrt{8} }{8}  +  \dfrac{17 \sqrt{8} }{8}  \times  \sqrt{8}  = a + b \sqrt{8}

 \dfrac{17}{ \sqrt{8} }  +  \dfrac{17}{ \sqrt{8} }  \times  \sqrt{8}  = a + b \sqrt{8}

So,

a =  \dfrac{17}{ \sqrt{8} }  \: b =  \dfrac{17}{ \sqrt{8} }

Answered by mukeshgupta1977
2

Hope you find my answer helpful

Please mark me as a brainliest

Attachments:
Similar questions