Math, asked by dikhyantbehera11, 9 months ago

Answer this question urgently​

Attachments:

Answers

Answered by Anonymous
49

» Question :

The curved-surface of a cylinder is 2π(y² - 7y + 12) and its radius is (y - 3). Find the height of the cylinder.

» To Find :

The height of the cylinder.\\\\

» Given :

  • Curved-surface area = 2\pi (y^{2} - 7y + 12

  • Radius = (y - 3)\\\\

» We Know :

Curved surface of a cylinder :

\mathtt{\underline{\boxed{CSA = 2 \pi rh}}}\\\\

» Concept :

In the given curved-surface area ,the equation i.e, (y² - 7x + 12) ,can be solved into factors for ease of calculation .

Expression :

\mathtt{y^{2} - 7y + 12}

By using ,the middle-splitting factor theorem ,we get :

\mathtt{\Rightarrow y^{2} - (3 + 4)y + 12}

\mathtt{\Rightarrow y^{2} - 3y - 4y + 12}

\mathtt{\Rightarrow y(y - 3) - 4(y - 3)}

Taking the common factor (y - 3) ,we get :

\mathtt{\Rightarrow (y - 3)(y - 4)}

\mathtt{\therefore (y^{2} - 7y + 12) = (y - 3)(y - 4)}

Hence ,the curved-surface area can be written as :

\sf{\boxed{2\pi[(y - 3)(y - 4)]}}

» Solution :

  • Curved-surface area = 2π[(y - 3)(y - 4)]

  • Radius = (y - 3)

Formula :

\mathtt{\underline{\boxed{CSA = 2 \pi rh}}}

Putting the value of the radius and the curved surface area in the formula ,we get :

\mathtt{\Rightarrow 2\pi[(y - 3)(y - 4)] = 2 \pi \times (y - 3)h}

\mathtt{\Rightarrow \dfrac{2\pi[(y - 3)(y - 4)]}{2 \pi} = (y - 3)h}

\mathtt{\Rightarrow \dfrac{\cancel{2\pi}[(y - 3)(y - 4)]}{\cancel{2\pi}} = (y - 3)h}

\mathtt{\Rightarrow (y - 3)(y - 4) = (y - 3)h}

\mathtt{\Rightarrow \dfrac{(y - 3)(y - 4)}{(y - 3)} = h}

\mathtt{\Rightarrow \dfrac{\cancel{(y - 3)}(y - 4)}{\cancel{(y - 3)}} = h}

\mathtt{\Rightarrow (y - 4) = h}

Hence ,the height of the cylinder is (y - 4).\\\\

» Additional information :

  • Total-surface area of a cylinder = 2πr(h + r)

  • Volume of cylinder = πr²h

  • Surface area of the Cuboid = 2(lb + lh + bh)

  • Curved surface area of rectangle = 2(l + b)h

Where ,

h = height

r = radius

l = length

b = breadth

Answered by MaIeficent
11

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • The curved surface area of cylinder = 2π(y²- 7y + 12).

  • Radius of cylinder = (y - 3)

\bf{\underline{\underline\blue{To\:Find:-}}}

  • The height of the cylinder.

\bf{\underline{\underline\green{Solution:-}}}

As we know that:-

Curved surface area (CSA) of cylinder is given by the formula:-

 \boxed{ \rm \leadsto CSA\: of \: cylinder \:  = 2\pi rh}

Here:-

• r = radius = (y - 3)

• h = height

• CSA = 2π(y² - 7y + 12)

Substituting the values:-

\rm   \implies2\pi(  {y}^{2} - 7y + 12)  \:  = 2\pi rh

\rm   \implies2 \not\pi(  {y}^{2} - 7y + 12)  \:  = 2 \not\pi (y - 3)h

\rm   \implies\not2(  {y}^{2} - 7y + 12)  \:  = \not2 (y - 3)h

\rm   \implies {y}^{2} - 7y + 12 \:  =  (y - 3)h

\rm   \implies {y}^{2} - 3y  - 4y +  12 \:  =  (y - 3)h

\rm   \implies y (y- 3) - 4(y  - 3)\:  =  (y - 3)h

\rm   \implies  (y- 3) (y  - 4)\:  =  (y - 3)h

\rm   \implies   \dfrac{(y- 3) (y  - 4)}{(y - 3)}\:  =  h

\rm   \implies    (y  - 4) =  h

\rm   \implies h=   (y  - 4)

\boxed{ \rm \therefore The \: height \: of \: the \: cylinder \:  =( y - 4)}

Similar questions
Math, 1 year ago