Math, asked by shrutigupta18, 8 months ago

answer this question urgently​

Attachments:

Answers

Answered by pradipraut1234
0

Answer:

.....

Step-by-step explanation:

....................

.

Answered by ananditanunes65
0

Question:

If tan A=

 \sqrt{2}  - 1

Then show that sin A cos A=

 \sqrt{2}  \div 4

Answer:

we know tanA=BP=12−1

∴H=

    \sqrt{ { \sqrt{2} - 1 }^{2}  +  {1}^{2} } =  \sqrt{4 - 2 \sqrt{2} }

∴sinA=

 \sqrt{2}  - 1 \div  \sqrt{(4 - 2 \sqrt{2)} }

     cosA=

1 \div  \sqrt{4 - 2 \sqrt{2} }

∴sinAcosA=

 \sqrt{2}  - 1 \div  \sqrt{4} - 2 \sqrt{2}  \times  \sqrt{4 - 2 \sqrt{2} }  \div 1

 \sqrt{2}  -1 \div 4 - 2 \sqrt{2}  \times  4  +  2 \sqrt{2}  \div  4  +  2 \sqrt{2}

2 \sqrt{2}  \div 8

 \sqrt{2}  \div 4

Hence proved.

Hope this helps you

Please mark as brainliest

Similar questions
Physics, 4 months ago