Physics, asked by Anonymous, 1 year ago

ANSWER THIS QUESTION WITH PROPER EXPLANATION

#No Spamming Plz​

Attachments:

Answers

Answered by nirman95
11

Answer:

The basic concept is to draw FBD of each blocks , put the forces and use Translational Equilibrium equation .

I will be putting the angle of wedge as θ , mass as m and frictional coefficient as μ.

Since the body is in Translational Equilibrium :

mg \sin( \theta)  = f + ma \cos( \theta)

 =  > mg \sin( \theta)  =  \mu N  + ma \cos( \theta)

 =  > mg \sin( \theta)  =  \mu  \{mg \cos( \theta)  + ma \sin( \theta)  \}  + ma \cos( \theta)

Cancelling mass on both sides :

 =  >  \cancel mg \sin( \theta)  =  \mu  \{ \cancel mg \cos( \theta)  +  \cancel  ma \sin( \theta)  \}  +  \cancel ma \cos( \theta)

Putting all the available values :

 =  >  \dfrac{g}{ \sqrt{2} }  = 0.5 \bigg \{ \dfrac{g}{ \sqrt{2} }  +  \dfrac{a}{ \sqrt{2} }  \bigg \} +  \dfrac{a}{ \sqrt{2} }

 =  >  \dfrac{g}{ \sqrt{2} }  =  \dfrac{1}{2}  \bigg \{ \dfrac{g}{ \sqrt{2} }  +  \dfrac{a}{ \sqrt{2} }  \bigg \} +  \dfrac{a}{ \sqrt{2} }

 =  >  \dfrac{g}{ \sqrt{2} }  -  \dfrac{g}{2 \sqrt{2} }  =  \dfrac{a}{2 \sqrt{2} }  +  \dfrac{a}{ \sqrt{2} }

 =  >  \dfrac{g}{2 \sqrt{2} }  =  \dfrac{3a}{2 \sqrt{2} }

 =  > a =  \dfrac{g}{3}

So final answer :

 \boxed{ \red{ \huge{ \bold{a =  \dfrac{g}{3} }}}}

Attachments:

Anonymous: Thanks a lot^_^
nirman95: Welcome ❤️
Answered by Anonymous
13

Solution :

Given:

✏ mass of block = m = 1kg

✏ mass of wedge = M = 10kg

✏ co-efficient of friction = 0.5

To Find:

✏ The minimum horizontal acceleration to the wedge such that block will not slide down on the wedge.

Concept:

✏ In this kind of questions, first we have to draw FBD of block...Please see the attachment for better understanding...

✏ This question is completely based on concept of 'Force equilibrium'.

Calculation:

_________________________________

  • Equilibrium in y-axis

✏ N = mgsin45° + macos45°

N = m(gsin45° + acos45°)

_________________________________

  • Equilibrium in x-axis

\circ\sf\: mg\sin45\degree = ma\cos45\degree + \mu\times N \\ \\ \circ\sf \: mg\sin45\degree = ma\cos45\degree + \mu(mg\cos45\degree+masin45\degree)\\ \\ \circ\sf \: g\sin45\degree= a\cos45\degree + \mu(g\sin45\degree + a\sin45\degree)\\ \\ \circ\sf \: a(\cos45\degree+\mu\sin45\degree) = g(\sin45\degree - \mu\cos45\degree)\\ \\ \circ\sf \: a[\dfrac{1}{\sqrt{2}}+ \dfrac{0.5}{\sqrt{2}}] = g[\dfrac{1}{\sqrt{2}}-\dfrac{0.5}{\sqrt{2}}]\\ \\ \circ\sf \: a(\dfrac{1.5}{\sqrt{2}})= g(\dfrac{0.5}{\sqrt{2}})\\ \\ \circ\sf \: a= \dfrac{0.5g}{1.5}\\ \\ \circ\: \boxed{\sf{\pink{\large{a= \dfrac{g}{3}}}}}

_________________________________

Option-C)

Attachments:

Anonymous: I think u forgot to add the attachment
nirman95: Nice ❤️
Similar questions