Math, asked by adeeba65, 9 months ago

answer this questions​

Attachments:

Answers

Answered by Isighting12
1

Answer:

Question 3)

\frac{1}{2} & \frac{1}{3}

since they do not have the same denominator thus first we will find the LCM of (2,3) and then find the factors

= \frac{1*6}{2*6} & \frac{1*4}{3*4}

= \frac{6}{12} & \frac{4}{12}

thus the rational number between \frac{1}{2} & \frac{1}{3} = \frac{5}{12}

III

Question 1) \frac{3}{7}+(\frac{-4}{9})+(\frac{-11}{7}) +\frac{7}{9}

\frac{3}{7} -\frac{11}{7}+\frac{7}{9} -\frac{4}{9}\\\\\frac{-8}{7} + \frac{3}{9}\\\\\frac{-8}{7}+\frac{1}{3}\\\\\frac{[(-8)*3]+[1*7]}{7*3}\\\\\frac{-24+7}{21}\\\\\frac{-17}{21}

Question 2) \frac{-5}{6} & \frac{7}{8}

just like we did in question 3 above we will do the same here

=\frac{-5*4}{6*4} & \frac{7*3}{8*3}

=\frac{-20}{24} & \frac{21}{24}

thus the 5 rational numbers are :

\frac{-22}{24} , \frac{-25}{24} , \frac{-30}{24} , \frac{10}{24} , \frac{20}{24}

if you want you can write them in their lowest form as well

Question 3)  (\frac{-8}{9}* \frac{1}{-5} )+(\frac{-8}{9}* \frac{-7}{11}) = \frac{-8}{9}(\frac{1}{-5} + \frac{-7}{11})

LHS

(\frac{-8}{9}* \frac{1}{-5} )+(\frac{-8}{9}* \frac{-7}{11}) \\\\

It is the distributive property of multiplication over addition

= \frac{-8}{9}(\frac{1}{-5} + \frac{-7}{11})

RHS

= \frac{-8}{9}(\frac{1}{-5} + \frac{-7}{11})

                                          LHS=RHS

                                       Hence proved

Similar questions