Math, asked by ab1234567890, 1 year ago

answer this questions

Attachments:

Answers

Answered by ramuchhetri
0

x =  \frac{5 -  \sqrt{3} }{5 +  \sqrt{3} } \times  \frac{5 -  \sqrt{3} }{5 -  \sqrt{3} }  \\     { \frac{(5 -  \sqrt{3)} }{ {5}^{2}  -  { \sqrt{3} }^{2} } }^{2}  \\  \frac{28 - 10 \sqrt{3} }{22}  \\ y =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }  \\ { \frac{(5 +  \sqrt{3)} }{ {5}^{2}  -  { \sqrt{3} }^{2} } }^{2}  \\  \frac{28 + 10 \sqrt{3} }{22}  \\  {x}^{2}  -  {y}^{2}  =  \frac{28 - 10 \sqrt{3} }{22}  -  \frac{28 + 10 \sqrt{3} }{22}  \\  \frac{ - 20 \sqrt{3} }{22}  =  \frac{ - 10 \sqrt{3} }{11}
Answered by sumantkumar30961
0

Answer:

\begin{lgathered}x = \frac{5 - \sqrt{3} }{5 + \sqrt{3} } \times \frac{5 - \sqrt{3} }{5 - \sqrt{3} } \\ { \frac{(5 - \sqrt{3)} }{ {5}^{2} - { \sqrt{3} }^{2} } }^{2} \\ \frac{28 - 10 \sqrt{3} }{22} \\ y = \frac{5 + \sqrt{3} }{5 - \sqrt{3} } \times \frac{5 + \sqrt{3} }{5 + \sqrt{3} } \\ { \frac{(5 + \sqrt{3)} }{ {5}^{2} - { \sqrt{3} }^{2} } }^{2} \\ \frac{28 + 10 \sqrt{3} }{22} \\ {x}^{2} - {y}^{2} = \frac{28 - 10 \sqrt{3} }{22} - \frac{28 + 10 \sqrt{3} }{22} \\ \frac{ - 20 \sqrt{3} }{22} = \frac{ - 10 \sqrt{3} }{11}\end{lgathered}

x=

5+

3

5−

3

×

5−

3

5−

3

5

2

3

2

(5−

3)

2

22

28−10

3

y=

5−

3

5+

3

×

5+

3

5+

3

5

2

3

2

(5+

3)

2

22

28+10

3

x

2

−y

2

=

22

28−10

3

22

28+10

3

22

−20

3

=

11

−10

3

Similar questions