Math, asked by rahejadarshan, 11 months ago


Answer this quetion gast pls if you woll help me i will help you plsssss answer this

Attachments:

Answers

Answered by Anonymous
2

Solution

  =  > \frac{9 {}^{n} \times 3 {}^{2}  \times (3  {}^{ \frac{ - n}{2} } ) {}^{ - 2}   - 27 {}^{n}   }{3 {}^{3m}  \times 2 {}^{3} }  =  \frac{1}{27}  \\  =  >  \frac{3 {}^{2n}  \times 3 {}^{2}  \times 3 {}^{n}  - 3 {}^{3n} }{3 {}^{3m} \times 2 {}^{3}  }  =  \frac{1}{3 {}^{3} }  \\  =  >  \frac{3 {}^{2n + n}  \times 3 {}^{2} - 3 {}^{3n}  }{3 {}^{3m} \times 2 {}^{3}  }  = 3 {}^{ - 3}  \\  =  >  \frac{3 {}^{3n}(3 {}^{2}  - 1) }{3 {}^{3m}  \times 2 {}^{3} }  = 3 {}^{ - 3}  \\  =  >  \frac{3 {}^{3n} \times 8 }{3 {}^{3m} \times 8 }  = 3 {}^{ - 3}  \\  =  > 3 {}^{3n - 3m}  = 3 {}^{ - 3}  \\  therefore..... \\  =  > 3n - 3m =  - 3 \\  =  > m - n = 1 \\ \\  \\  \\  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\huge\mathcal{\bf{\boxed{\boxed{\large\mathcal{m - n = 1}}}}}}}(proved) \:

Answered by himanshusaini69
1

Answer:

question is uncomplete , can be true if m =n+ 1. '

Attachments:
Similar questions