Math, asked by Ghost04, 10 months ago

Answer this!

○ Solve this ○
\frac {1}{\sqrt7-\sqrt6}
​ ​

Answers

Answered by Anonymous
51

Question :

Solve :

 \frac{1}{ \sqrt{7}  -  \sqrt{6} }

Solution :

 \frac{1}{ \sqrt{7} -  \sqrt{6}  }

Now rationalise the denominator

 =  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  \times  \frac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7} +  \sqrt{6}  }

 =  \frac{ \sqrt{7} +  \sqrt{6}  }{( \sqrt{7 }  -  \sqrt{6} )( \sqrt{7} +  \sqrt{6}  )}

we know that a{}^{2}-b{}^{2}=(a+b)(a-b)

 =  \frac{ \sqrt{7}  +  \sqrt{6} }{( \sqrt{7}) {}^{2}  - ( \sqrt{6}) {}^{2}   }

 =  \frac{ \sqrt{7}  +  \sqrt{6} }{7 - 6}

 =  \sqrt{7}  +  \sqrt{6}

it is the required solution!

Answered by CharmingPrince
15

{\huge {\underline {\underline  {\mathfrak {\green {Answer }}}}}}

_________________________

{\bigstar {\underline {\bf {\pink {Given\:in\:the\:question:-}}}}}

\frac {1}{\sqrt7-\sqrt6}

_____________________________________

{\bigstar {\underline {\bf {\pink {Solution\:of\:the\:question:-}}}}}

= \displaystyle\frac {1}{\sqrt7-\sqrt6}

= \displaystyle\frac {1}{\sqrt7-\sqrt6}× \displaystyle\frac {\sqrt7+\sqrt6}{\sqrt7+\sqrt6}

= \displaystyle\frac {\sqrt7+\sqrt6}{({\sqrt7})^{2}+({\sqrt6})^{2}}

= \displaystyle\frac {\sqrt7+\sqrt6}{7-6}

= \sqrt {7}+\sqrt{6}

_________________________

Similar questions