Answer this trigonometry problem in the pic
Answers
_____________________________________
- cosθ + sinθ = cosθ
- cosθ - sinθ = sinθ
_____________________________________
(cosθ + sinθ )² = ( cosθ )²
cos²θ + sin²θ + 2cosθ.sinθ = 2cos²θ
1 + 2cosθ.sinθ = 2cos²θ
2cosθ.sinθ = 2cos²θ -1
2cosθ.sinθ = cos2θ ........(i)
Now,
(cosθ - sinθ )²
= cos²θ + sin²θ - 2cosθ.sinθ
= 1 - 2cosθ.sinθ
= 1 - cos2θ ; [ from (i) ]
= 2sin²θ
∵ (cosθ - sinθ )² = 2sin²θ
cosθ - sinθ = √(2sin²θ)
cosθ - sinθ = sinθ
_____________________________________
Given−
cosθ + sinθ = {2}
2
cosθ
To prove
cosθ - sinθ = {2}
2
sinθ
_____________________________________
Proof:−
(cosθ + sinθ )² = {2}
2
cosθ )²
cos²θ + sin²θ + 2cosθ.sinθ = 2cos²θ
1 + 2cosθ.sinθ = 2cos²θ
2cosθ.sinθ = 2cos²θ -1
2cosθ.sinθ = cos2θ ........(i)
Now,
(cosθ - sinθ )²
= cos²θ + sin²θ - 2cosθ.sinθ
= 1 - 2cosθ.sinθ
= 1 - cos2θ ; [ from (i) ]
= 2sin²θ
∵ (cosθ - sinθ )² = 2sin²θ
cosθ - sinθ = √(2sin²θ)
cosθ - sinθ = {2}
2
sinθ
Hence,proved