Math, asked by sharmakaustubh565, 9 months ago

answer this with steps

Attachments:

Answers

Answered by dharshudaisy13
0

Answer:

I think the answer is option c

Answered by pulakmath007
37

SOLUTION :

GIVEN

Let N be the set of natural numbers

 \sf{A =  \{ \:  {n}^{2} : n \in N  \: \}  }

 \sf{B =  \{ \:  {n}^{3} : n \in N  \: \}  }

TO CHOOSE THE CORRECT OPTION

 \sf{}(a)\:  \: A \cup \: B  = N

 \sf{}(b) \:  The  \: Complement  \: of  \: A \cup \: B  \:  \: is \: infinite

\sf{} (c) \:  \: A \cap \: B \:  \: must \: be \: finite \:  \: set

 \sf{} (d)\: A \cap \: B \: is \: a \:proper \:  subset \: of \:  \{  \:  {m}^{6} : m \in   \: N \: \}

EVALUATION

 \sf{A =  \{ \:  {n}^{2} : n \in N  \: \}  }

 =  \{1, 4,9,16,25,...... \}

 \sf{B =  \{ \:  {n}^{3} : n \in N  \: \}  }

 =  \{1, 8,27,64,125,...... \}

CHECKING FOR OPTION : (a)

 \sf{}A \cup \: B =  \{1,4,8,9,26,27,........ \}

 \sf{}Here \:  2 \in N \:  \:  but \:   \: 2 \notin A \cup \: B

 \sf{} \therefore \:   \: A \cup \: B   \ne N

So this option is not correct

CHECKING FOR OPTION : (b)

 \sf{}A \cup \: B =  \{1,4,8,9,26,27,........ \}

So

 \sf{}{(A \cup \: B)}^{c}  =  \{2,3,5,6,7,10,........ \}

This is an infinite set

  \therefore\sf{}The  \: Complement  \: of  \: A \cup \: B  \:is \: infinite

So this option is CORRECT

CHECKING FOR OPTION : (c)

 \sf{}A \cap \: B =  \{1,64,729,........ \}

This is an infinite set

 \therefore \:  \sf{}A \cap \: B \:   can \: not\: be \: finite \:  \: set

So this option is not correct

CHECKING FOR OPTION : (d)

 \sf{}A \cap \: B =  \{1,64,729,........ \}

 \sf{} A \cap \: B \:  =  \{  \:  {m}^{6} : m \in   \: N \: \}

 \sf{} \therefore A \cap \: B \: is  \: not\: a \:proper \:  subset \: of \:  \{  \:  {m}^{6} : m \in   \: N \: \}

Infact they are equal sets

So this option is not correct

FINAL RESULT

Let N be the set of natural numbers

 \sf{A =  \{ \:  {n}^{2} : n \in N  \: \}  }

 \sf{B =  \{ \:  {n}^{3} : n \in N  \: \}  }

Then

 \sf{}(b) \:  The  \: Complement  \: of  \: A \cup \: B  \:  \: is \: infinite

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If P = {x:x < 7, x ∈ N} and Q ={x: x²< 49,x ∈ N}

then

P ⊂ Q

Q ⊂ P

P = Q

P∪{7} = Q

https://brainly.in/question/23880095

Similar questions