Math, asked by aryansaab088, 10 months ago

answer this with the formulas​

Attachments:

Answers

Answered by Anonymous
3

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

\star \: {\tt{\green{  \: tan ^{ - 1}  \frac{1}{ \sqrt{ {x}^{2} - 1 } } }}}

{\sf{\underline{\blue{Now,}}}}

\star \boxed {\sf{\orange{ put \: x = sec \theta}}}

Then,

{\tt{ \implies \:  \sqrt{ {x}^{2} - 1 }  }} \\ \\

{\tt{ \implies  \sqrt{ {sec}^{2} \theta - 1 }   }} \\ \\

{\tt{ \implies  tan \theta  }} \\ \\

{\bf{\blue{\underline{Therefore,}}}}

{\tt{  {tan}^{ - 1}    \frac{1}{ \sqrt{ {x}^{2}  - 1} }  =  {tan}^{ - 1}  \bigg( \frac{1}{tan} \bigg) }} \\ \\

{\tt{ \implies   {tan}^{ - 1}(cot \theta)   }} \\ \\

{\tt{ \implies   {tan}^{ - 1} \bigg(  tan\big( \frac{\pi}{2}   -  \theta \big) \bigg)}} \\ \\

{\tt{ \implies    \frac{\pi}{2}  -  \theta  }} \\ \\

{\bf{\blue{\underline{Hence,}}}}

\boxed {\tt{\purple{  \bigstar \:  \:  {tan}^{ - 1} \frac{1}{ \sqrt{ {x}^{2}  - 1}  }   =  \frac{\pi}{2}  -  {sec}^{ - 1} x}}}

Similar questions