Answer those two questions....
Answers
1] Given : 3cosθ = 5sinθ ...(i)
To Find : ...(ii)
Now,
sinθ/cosθ = 3/5 [using(i)]
tanθ = 3/5
We know that, tanθ = Perpendicular/Base
So, Let perpendicular = 3x, Base = 5x
By Pythagoras Theorem,
(Hypotenuse)² = (Perpendicular)² + (Base)²
Hypotenuse = √(3x)² + (5x)²
= √9x² + 25x²
= √34x²
= √34
sinθ = Perpendicular/Hypotenuse = 3/√34
cosθ = Base/Hypotenuse = 5/√34
secθ = 1/cosθ = √34/5
Now, putting the known values in (ii), we get
→
→
→
→
→
→ 271/979
2] Given : 3sinx + 5cosx = 5
To Find : (3cosx - 5sinx)²
Now,
As we know that,
sin²x + cos²x = 1 ...(i)
3sinx + 5cosx = 5 (given)
Squaring both sides, we get
→ (3sinx + 5cosx)² = 5²
→ 9sin²x + 25cos²x + 30sinx.cosx = 25
...(ii)
Let, (3cosx - 5sinx)² = p
On solving further, we get
→ 9cos²x + 25sin²x - 30sinx.cosx = p
...(iii)
Adding (i) & (ii), we get
9(sin²x + cos²x) + 25(sin²x + cos²x) = p + 25
9(1) + 25(1) = p + 25 [using(1)]
9 + 25 = p + 25
p = 9
So, (3cosx - 5sinx)² = 9