Math, asked by GunnTeotia, 1 year ago

Answer ths question plz.

Attachments:

Answers

Answered by suvasuvi
0
i hope 4 and 64 is the answer

GunnTeotia: can u give me the solution
Answered by siddhartharao77
0

Given Quadratic equation is abx^2 + acx + b(bx + c) = 0.

⇒ abx^2 + (ac + b^2)x + bc = 0.

On comparing with ax^2 + bx + c = 0, we get

a = ab, b = (ac + b^2), c = bc.


Given that the equation has real and equal roots.

⇒ Δ = b^2 - 4ac = 0

       = (ac + b^2)^2 - 4(ab)(bc) = 0

       = (a^2c^2 + b^4 + 2ab^2c) - 4ab^2c = 0

       = a^2c^2 + b^4 + 2ab^2c - 4ab^2c = 0

       = a^2c^2 + b^4 - 2ab^2c = 0

       = (ac)^2 + (b^2)^2 - 2(ab)(b^2) = 0

       = (ac - b^2)^2 = 0

       = ac = b^2.



Option Verification:

(1) 4 & 49

⇒ b^2 = ac

          = 4 * 49

          = 196

     b = 14.{Rational number}



(2) 49 & 16.

⇒ b^2 = ac

           = 49 * 16

           = 784

    b = 28.{Rational number}




(3) 4 & 64

⇒ b^2 = ac

          = 4 * 64

          = 256

     b = 16.{Rational number}




(4) 8 & 49.

⇒ b^2 = ac

          = 392

      b  = 14√2, -14√2.{Irrational number}.



Therefore, the values of a and c respectively cannot be 8 & 49. - Option(D)



Hope it helps!

Similar questions