Math, asked by vishnu43, 2 months ago

Answer to the (i) question please​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 A + B + C = \frac{3\pi}{2}....[1]\\

Now,

 \cos^{2}(A) + \cos^{2}(B) - \cos^{2}(C)

 =   \frac{1 + \cos(2A) }{2}+  \frac{1 + \cos(2B)}{2} -  \frac{1 + \cos(2C)}{2} \\

 =   \frac{1}{2}    +  \frac{1}{2}   \{\cos(2A) + \cos(2B) - \cos(2C) \}\\

 =   \frac{1}{2}    +  \frac{1}{2}   \{2\cos(A + B) \cos(A  - B)  - \cos(3\pi -2(A + B)) \}\\

 =   \frac{1}{2}    +  \frac{1}{2}   \{2\cos(A + B) \cos(A  - B)   +  \cos2(A + B)\}\\

 =   \frac{1}{2}    +  \frac{1}{2}   \{2\cos(A + B) \cos(A  - B)   +  2\cos^{2} (A + B) - 1\}\\

 =   \frac{1}{2}    +  \frac{1}{2}   \{2\cos(A + B) \cos(A  - B)   +  2\cos^{2} (A + B) \} -  \frac{1}{2} \\

 =     \frac{1}{2}    [ 2\cos(A + B)  \{\cos(A  - B)   +  \cos (A + B) \}]  \\

 =      \cos( \frac{3\pi}{2} - C) . 2\cos(A) \cos (B)   \\

 =       - 2 \cos(A) \cos (B) \cos( C)  \\

Similar questions