Math, asked by Anonymous, 10 months ago

Answer whichever question you can..... please mention the question number.....

class 12__ differentiation of implicit functions.​

Attachments:

Answers

Answered by Anonymous
54

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

xy log(x + y)  = 1

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

ɴᴏᴡ,

ɴᴏᴡ,ᴅɪғғ, ᴡ.ʀ.ᴛ.x ᴡᴇ ɢᴇᴛ.

\implies y log(x + y)  + x \frac{dy}{dx}  log(x + y)  + ( \frac{xy}{x + y} )(1 +  \frac{dy}{dx} ) = 0

sɪɴᴄᴇ ,

 log(x + y)  =  \frac{1}{xy}

ʜʀғʀ,

 \implies \frac{y}{xy}  +  \frac{dy}{dx} ( \frac{x}{xy} ) +  (\frac{xy}{x + y} )(1 +  \frac{dy}{dx} ) = 0 \\ \implies \frac{1}{x}  +  \frac{1}{y} ( \frac{dy}{dx} ) +  (\frac{xy}{x + y} ) + ( \frac{xy}{x + y} ) \frac{dy}{dx} = 0 \\ \implies \frac{dy}{dx} ( \frac{1}{y}  +  \frac{xy}{x + y} ) =  - ( \frac{xy}{x + y}  +  \frac{1}{x} ) \\ \implies \frac{dy}{dx} ( \frac{x + y + x {y}^{2} }{y(x + y)})  =  - ( \frac{ {x}^{2} y + x + y}{(x + y)x} ) \\ \implies \frac{dy}{dx}  =  -  \frac{y}{x}  \frac{( {x}^{2} y + x + y)}{(x + y + x {y}^{2} }

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
2

hope \: it \: helps

Attachments:
Similar questions