Math, asked by addheshvarshney4, 1 month ago

answer who has given the answer is correct I have to add in brainliest ​

Attachments:

Answers

Answered by BrainlyWise
13

\large\boxed{\mathtt\red{Given:-}}

◑ Area of the Rhombus = 600 cm²

◑ Ratios of Diagonals = 3:4

\large\boxed{\mathtt\blue{Assumption:-}}

◑ Let the length of Diagonals be 3x and 4x

\large\boxed{\mathtt\green{Solution:-}}

we know that :-

✏ Area of Rhombus = \large\frac{Diagonal ₁ × Diagonal₂}{2}

Now, Substituting the value:-

✒ 600 cm² = \large\frac{3x×4x}{2}

✒ 600 cm² = 6x²

✒ x² = \large\frac{600\:cm²}{6}

✒ x = \sqrt{100\:cm²}

x = 10 cm

◑ Diagonal ₁ = 3x = 30 cm

◑ Diagonal ₂ = 4x = 40 cm

We know that :-

☞ Perimeter of Rhombus = {2{\sqrt{D₁+D₂}}}

✒ Perimetre = 2\sqrt{2500\:cm²}

✒ Perimetre = 2×50cm

\small\boxed{\mathtt\red{∴ Perimeter \:of \:Rhombus=100cm}}

The perimeter of the Rhombus is 100 cm

Answered by Anonymous
65

Answer:

{\large{\underline{\underline{\bf{Question\: : - }}}}}

  • The area of rhombus is 600 cm². The diognals of the rhombus are in the ratio 3:4. Find the perimeter of the rhombus.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Given\: : - }}}}}

  • Area of rhombus = 600 cm².
  • Ratio of rhombus diognals = 3:4

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{To \: Find\: : - }}}}}

  • Perimeter of rhombus

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Using  \: Formulae\: : - }}}}}

\bigstar{\red{\underline{\boxed{\bf{Area  \: of  \: rhombus = \dfrac{1}{2} \times d_1 \times d_2}}}}}

\bigstar{\red{\underline{\boxed{\bf{Perimeter \: of  \: rhombus=2\sqrt{{(d_1)}^{2} +  {(d_2)}^{2} } }}}}}

\green\bigstar Where

  • \rm{d_1} = length of diagonal 1
  • \rm{d_2} = length of diagonal 2

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Diagram\: : - }}}}}

\green\bigstar Rhombus with diagonal

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,3){1.5}}\put(0,0){\line(1,0){5}}\put(5,0){\line(1,3){1.5}}\put(1.5,4.5){\line(1,0){5}}\qbezier(1.56,4.5)(1.56,4.5)(5,0)\qbezier(6.45,4.5)(6.45,4.5)(0,0)\put(-0.5,-0.5){\sf B}\put(1,4.8){\sf A}\put(5.2,-0.5){\sf C}\put(6.7,4.75){\sf D}\put(3,1.6){\sf O}\end{picture}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Solution\: : - }}}}}

\green\bigstar Let the,

  • \rm{d_1} = 3x
  • \rm{d_2} = 4x

\begin{gathered}\end{gathered}

\green\bigstar Finding the diognals of rhombus

{\dashrightarrow{\sf{Area_{(Rhombus)} = \dfrac{1}{2}  × d_1 × d_2}}}

  • Substuting the values

{\dashrightarrow{\sf{600 = \dfrac{1}{2}  \times 3x \times 4x}}}

{\dashrightarrow{\sf{600 = \dfrac{1}{2}  \times 12 \:  {x}^{2} }}}

{\dashrightarrow{\sf{600 \times 2 = 12 \:  {x}^{2} }}}

{\dashrightarrow{\sf{1200= 12 \:  {x}^{2} }}}

{\dashrightarrow{\sf{\dfrac{1200}{12} =  {x}^{2}}}}

{\dashrightarrow{\sf{ \cancel{\dfrac{1200}{12}} =  {x}^{2}}}}

{\dashrightarrow{\sf{100=  {x}^{2}}}}

{\dashrightarrow{\sf{x =  \sqrt{100}}}}

{\dashrightarrow{\sf{x =  \sqrt{10 \times 10}}}}

{\dashrightarrow{\sf{x = 10}}}

\bigstar{\purple{\underline{\boxed{\bf{x = 10}}}}}

\begin{gathered}\end{gathered}

\green\bigstar Thus,

  • Length of 1 diagonal = 3 × 10 = 30 cm
  • Length of 2 diagonal = 4 × 10 = 40 cm.

The diognals of rhombus are 30 cm and 40 cm.

\begin{gathered}\end{gathered}

\green\bigstar Now, Finding the perimeter of rhombus

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{{(d_1)}^{2} +  {(d_2)}^{2}}}}}

  • Substuting the values

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{{(30)}^{2} +  {(40)}^{2}}}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{{(30 \times 30)} +  {(40 \times 40)}}}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{{(900)} +  {(1600)}}}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{(900+1600)}}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{(2500)}}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2\sqrt{(50 \times 50)}}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  2 \times 50}}}

{\dashrightarrow{\sf{Perimeter_ {(Rhombus)} =  100 \: cm }}}

\bigstar{\purple{\underline{\boxed{\bf{Perimeter \: of \: rhombus =  100 \: cm }}}}}

The perimeter of rhombus is 100 cm.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Learn \: More\: : - }}}}}

\green\bigstar Formulas of area

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Request\: : - }}}}}

  •  If there is any difficulty viewing this answer in app, kindly see this answer at website Brainly.in for clear steps and understanding.
  •  Here is the question link : https://brainly.in/question/45973120

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions