Math, asked by SorkoZom, 4 months ago

★ Answer with explaination ★

Q3. Given that sinθ = a/b, then cosθ is equal to :

A. b/√b² - a²

B. b/a

C. √b² - a²/b

D. a/√b² - a²​​

Answers

Answered by vishal10012005
1

Answer:

C. (√b^2 - a^2)/b

Step-by-step explanation:

Here's your answer

Attachments:

SorkoZom: Can you please explain your answer?
vishal10012005: I will attach a pic in just a min. wait pls.
vishal10012005: I have posted the explanation
vishal10012005: please mark me as brainliest.
SorkoZom: Tysm♡︎
vishal10012005: welcome
Answered by Anonymous
6

Given:

\qquad \implies \sf sin \theta = \dfrac {a}{b}

To Find:

The value of cosθ = ?

Solution:

Given that, \sf sin \theta = \dfrac {a}{b} Using the identity,

\implies \sf sin^2 \theta + cos^2 \theta = 1

\implies \sf sin^2 A = 1 - cos^2 A

\implies \sf sin A = \sqrt{(1 - cos^2 A)}

Therefore,

\implies \sf cos \theta = \bigg( \sqrt{ \dfrac {1 - a²}{b^2}} \bigg)

\implies \sf \sqrt{(b^2 - a^2)}{b^2}

\implies \sf \sqrt{\dfrac {b^2 - a^2}{b}}

\large {\underline{\boxed{\sf cos \theta = \sqrt{\dfrac {(b^2 - a^2)}{b}}}}}

Explore more!!

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

 \\

\large{\underline{\underline{\red{\bf Note:}}}}

App user ?

Please see the answer in web for latex output.


SorkoZom: Impressive :D
Anonymous: Thanks :)
vishal10012005: Bhai kya kuchh bhi likh diya hai yaar
vishal10012005: kabhi solve bhi kiya hai trigonometry mein koi question
vishal10012005: mera answer pad ke dekh
vishal10012005: mera bikul sahi hai
Anonymous: Great answer!!
Anonymous: Thanks :)
Similar questions