Math, asked by gbisht1972gb, 3 months ago

answer with explanation ​

Attachments:

Answers

Answered by Anonymous
42

Answer :

\sf\implies\::\:\dfrac{-1}{3}\:+\:(\dfrac{-2}{6}\:+\:\dfrac{5}{8})\:=\:(\dfrac{-1}{3}\:-\:\dfrac{2}{6})\:+\:\dfrac{5}{8}

\sf\implies\::\:\dfrac{-1}{3}\:+\:(\dfrac{-8}{24}\:+\:\dfrac{15}{24})\:=\:(\dfrac{-2}{6}\:-\:\dfrac{2}{6})\:+\:\dfrac{5}{8}

\sf\implies\::\:\dfrac{-1}{3}\:+\:(\dfrac{-8\:+\:15}{24})\:=\:(\dfrac{-2\:-\:2}{6})\:+\:\dfrac{5}{8}

\sf\implies\::\:\dfrac{-1}{3}\:+\:(\dfrac{7}{24})\:=\:(\dfrac{-4}{6})\:+\:\dfrac{5}{8}

\sf\implies\::\:\dfrac{-8}{24}\:+\:\dfrac{7}{24}\:=\:\dfrac{-16}{24}\:+\:\dfrac{15}{24}

\sf\implies\::\:\dfrac{-1}{24}\:=\:\dfrac{-1}{24}

L.H.S = R.H.S

Attachments:
Answered by EthicalElite
123

 \Large \underline{\bf Question} :

 \\

 \sf If \: x \:  =  \dfrac{ - 1}{3} , \: y \:  =  \dfrac{ - 2}{6}  \: and \: z  \: =  \dfrac{5}{8} , \: show \: that :  \\  \\ \sf x + (y + z) = (x + y) + z

 \\

 \Large \underline{\bf Answer} :

 \\

 \large \underline{\tt Given} :

 \\

  • \sf x \:  =  \dfrac{ - 1}{3}

  • \sf y \:  =  \dfrac{ - 2}{6}

  • \sf z  \: =  \dfrac{5}{8}

 \\

 \large \underline{\tt To \: Prove} :

 \\

  • x + (y + z) = (x + y) + z

 \\

 \large \underline{\tt Proof} :

 \\

We have to prove :

  • x + (y + z) = (x + y) + z

 \\

We have :

  • \sf x \:  =  \dfrac{ - 1}{3}

  • \sf y \:  =  \dfrac{ - 2}{6}

  • \sf z  \: =  \dfrac{5}{8}

 \\

So, by substituting values in LHS [x + (y + z)] :

 \sf : \implies \underline{\bf LHS} = \dfrac{ - 1}{3} + \Bigg(\dfrac{ - 2}{6} + \dfrac{5}{8}\Bigg)

 \sf : \implies \underline{\bf LHS} = \dfrac{ - 1}{3} + \Bigg(\dfrac{ - 16 + 30}{48}\Bigg)

 \sf : \implies \underline{\bf LHS} = \dfrac{ - 1}{3} + \Bigg(\cancel{\dfrac{14}{48}}\Bigg)

 \sf : \implies \underline{\bf LHS} = \dfrac{ - 1}{3} + \dfrac{7}{24}

 \sf : \implies \underline{\bf LHS} = \dfrac{ - 8 + 7}{24}

 \sf : \implies \underline{\bf LHS} = \dfrac{ - 1}{24}

 \\

 \: \: \: \: \: \: \dag \: \pink{\underline{\boxed{\bf LHS = \dfrac{ - 1}{24}}}}

 \\

Now, by substituting values in RHS [(x + y) + z] :

 \sf : \implies \underline{\bf RHS} = \Bigg(\dfrac{ - 1}{3} + \dfrac{ - 2}{6}\Bigg) + \dfrac{5}{8}

 \sf : \implies \underline{\bf RHS} = \Bigg(\dfrac{ - 1}{3} - \dfrac{2}{6}\Bigg) + \dfrac{5}{8}

 \sf : \implies \underline{\bf RHS} = \dfrac{ - 2 - 2}{6} + \dfrac{5}{8}

 \sf : \implies \underline{\bf RHS} = \dfrac{ -4}{6} + \dfrac{5}{8}

 \sf : \implies \underline{\bf RHS} = \dfrac{ -32 + 30}{48}

 \sf : \implies \underline{\bf RHS} = \cancel{\dfrac{ -2}{48}}

 \sf : \implies \underline{\bf RHS} = \dfrac{ - 1}{24}

 \\

 \: \: \: \: \: \: \dag \: \pink{\underline{\boxed{\bf RHS = \dfrac{ - 1}{24}}}}

 \\

 \: \: \: \: \: \: \: \blue{\underline{\boxed{\bf As, \: LHS = RHS = \dfrac{ - 1}{24}}}}

 \: \: \: \: \: \: \: \: \blue{\underline{\boxed{\bf Hence, \: Proved }}} \: \dag

Similar questions