Math, asked by AnanyaBaalveer, 3 days ago

Answer with proper explanation.
Answer only Mathdude​

Attachments:

Answers

Answered by manod4952
4

Answer:

answer is -12/13 is correct answer

Attachments:
Answered by mathdude500
13

Question :- Solve for x :-

\rm \: \dfrac{x}{x + 1}  + \dfrac{x + 1}{x}  = 2\dfrac{1}{12}  \\

\large\underline{\sf{Solution-}}

Given equation is

\rm \: \dfrac{x}{x + 1}  + \dfrac{x + 1}{x}  = 2\dfrac{1}{12}  \\

can be rewritten as on taking LCM, we get

\rm \: \dfrac{ {x}^{2}  +  {(x + 1)}^{2} }{(x + 1)x}  = \dfrac{25}{12}  \\

\rm \: \dfrac{ {x}^{2}+ {x}^{2} + 1 + 2x}{ {x}^{2} + x}  = \dfrac{25}{12}  \\

\rm \: \dfrac{ 2{x}^{2} + 1 + 2x}{ {x}^{2} + x}  = \dfrac{25}{12}  \\

\rm \: 25( {x}^{2} + x) = 12( {2x}^{2} + 1 + 2x) \\

\rm \: 25{x}^{2} + 25x = {24x}^{2} + 12 + 24x \\

\rm \: 25{x}^{2} + 25x  -  {24x}^{2} - 12 -  24x  = 0\\

\rm \:  {x}^{2} + x - 12   = 0\\

On splitting the middle terms, we get

\rm \:  {x}^{2} + 4x - 3x - 12   = 0\\

\rm \: x(x + 4) - 3(x + 4) = 0 \\

\rm \: (x + 4)(x - 3) = 0 \\

\rm \: x + 4 = 0 \:  \:  \: or \:  \:  \: x - 3 = 0 \\

\rm\implies \:x =  - 4 \:  \:  \: or \:  \:  \: x = 3 \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions