Math, asked by allysia, 1 month ago

Answer with proper explanation.

No spams. Will be reporting accounts. ​

Attachments:

Answers

Answered by assingh
24

Topic :-

Indefinite Integration

To Solve :-

\displaystyle \int \dfrac{x^2-\sqrt{3}x+1}{x^4-x^2+1}\:dx

Solution :-

\displaystyle \int \dfrac{x^2-\sqrt{3}x+1}{x^4-x^2+1}\:dx

Factoring denominator,

\displaystyle \int \dfrac{x^2-\sqrt{3}x+1}{(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1)}\:dx

\displaystyle \int \dfrac{1}{x^2+\sqrt{3}x+1}\:dx

Completing the square,

\displaystyle \int \dfrac{1}{\left(x+\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}}\:dx

\displaystyle \int \dfrac{1}{\dfrac{(2x+\sqrt{3})^2+1}{4}}\:dx

\displaystyle \int \dfrac{4}{(2x+\sqrt{3})^2+1}\:dx

Substitute 2x + √3 = t,

2\:dx=dt

4\:dx=2\:dt

\displaystyle \int \dfrac{2}{t^2+1}\:dt

\displaystyle 2\int \dfrac{1}{t^2+1}\:dt

2\tan^{-1}t+C

\left(\because \displaystyle \int\dfrac{1}{1+z^2}\:dz=\tan^{-1}z+C \right)

Put back value of 't',

2\tan^{-1}(2x+\sqrt{3})+C

C\:is\:constant\:of\:integration.

Answer :-

\underline{\boxed{\displaystyle \int \dfrac{x^2-\sqrt{3}x+1}{x^4-x^2+1}\:dx=2\tan^{-1}(2x+\sqrt{3})+C}}


Asterinn: Nice!
Similar questions