answer with proper explanation...
right answer will be marked brainliest
Attachments:
Answers
Answered by
14
Let . (Attachment 1)
The equation above shows the rational function graph. Solving this equation for , as solutions need to be real, we get the range of by discriminant.
Now, this equation should be true for all .
Let's draw the graph above. (Attachment 2)
For the graph for ;
- to open up, the leading coefficient should be positive.
- to intersect once or never, the discriminant should be non-positive.
Then the graph will have a non-positive discriminant,
and the leading coefficient will be positive.
The union is , which is the option (4).
Attachments:
Answered by
10
Answer:
Step-by-step explanation:
- ⇒ x² + 2x + a = k (x² + 4x + 3a)
- ⇒ x² + 2x + a-k (x² + 4x + 3a) = 0
- ⇒ (1 − k) x² + (2 - 4k) x + (a -3ka) = 0
- Since x € R, D≥0
- (2-4k)² - 4x (1-k) (a -3ka) ≥ 0
- ⇒ 4+16k² - 16 k. - 4 (a - 3ka - ak + 3k²a) ≥ 0
- ⇒ 4+16k² - 16k4a + 12ka + 4ak –
- 12k²a > 0
- 1 + 4k² - 4k -a + 3ka +ak – 3k²a > 0
- ⇒ k² (4 - 3a) + k (4a − 4) + 1 - a ≥ 0
- ⇒ 4 - 3a > 0
- → 3a < 4
- D <0
- ⇒ (4a − 4)² – 4 (4 – 3a) (1 − a) ≤ 0
- ⇒ 16(a − 1)² - 4 (4 - 3a) (1 - a) ≤ 0
- ⇒ (1-a) (4 (1-a) - 4+3a) ≤ 0
- a < 4/3
- (4a - 4)² - 4 (4 – 3a) (1 − a) ≤ 0
- ⇒ 16(a − 1)² – 4 (4 – 3a) (1 − a) ≤ 0
- ⇒ (1-a) (4 (1-a) −4+3a) ≤ 0
- ⇒ (1-a) (-a) ≤ 0
- ⇒ (a-1) a ≤0
- ⇒ a € [0, 1]
Similar questions