Math, asked by ravindra7149, 3 days ago

Answer write in your page (°-°) Answer Typing kroge to bhi chalega.​

Attachments:

Answers

Answered by Anonymous
11

We know that,

\boxed{\tan(A) = \dfrac{\sin(A)}{\cos(A)}}

By substituting the given values in the formula, we get the following results:

\longrightarrow \tan(A) = \dfrac{\frac{3}{5}}{\frac{4}{5}}

\longrightarrow \tan(A) = \dfrac{3}{\cancel{5}} \times \dfrac{\cancel{5}}{4}

\longrightarrow \boxed{\tan(A) = \dfrac{3}{4}}

Answered by Teluguwala
25

  \huge \textbf{ \textsf{\color{navy}{♡ \: So}\purple{luti}\pink{on \: ♡}}}

 \displaystyle  \large\bf\: The  \: value \:  of  \: Tan  \: A = \frac{3}{4}

 \:

Step-by-step Explanation :

Given :

\displaystyle  \bf Sin \: A =  \frac{3}{5}   \: \:  \: and \: \:  \:   Cos \: A=  \frac{4}{5}

 \:

To Find :

 \bf The  \: value \:  of \:  Tan  \: A \: ?

 \:

Explanation :

We know that,

\displaystyle  \bf \red⇝ \:  Tan \: A   =  \frac{Sin \: A}{Cos \: A}

So here,

\displaystyle  \bf  \implies \:  Tan \: A   = \large  \frac{  \: \frac{3}{5} \:  }{  \: \frac{4}{5} \:  }

 \displaystyle  \bf  \implies\:  Tan \: A   =  \frac{3}{ \cancel5}  \times  \frac{ \cancel5}{4}

 \displaystyle  \red{ \bf   \implies \:   \underline{ \boxed{  \bf Tan \: A   =  \frac{3}{ 4}}}}

Hence,

 \displaystyle  \large\bf\: ∴ \: The  \: value \:  of  \: Tan  \: A = \frac{3}{4}

 \:

To Get More Information :

 \displaystyle \bf  \red \star  \:  \bf \: Sin \:  A =  \frac{ Opposite \: side}{Hypotenuse}

\displaystyle \bf  \red \star  \: \bf \: Cos \:  A =  \frac{Adjacent \: side}{Hypotenuse}

\displaystyle \bf  \red \star  \:  \bf \:Tan \:  A =  \frac{Opposite \: side}{Adjacent \: side}  \:  \: or \:  \:  \frac{Sin \: A}{Cos \: A}

\displaystyle \bf  \red \star  \:  \bf \:Cosec \:  A =  \frac{1}{Sin \: A}   =  \frac{1}{ \frac{Opposite \: side}{Hypotenuse} }  = \frac{Hypotenuse}{Opposite\: side}

\displaystyle \bf  \red \star  \:  \bf \: Sec\:  A =  \frac{1}{Cos\: A}   =  \frac{1}{ \frac{ Adjacent\: side}{Hypotenuse} }  = \frac{Hypotenuse}{Adjacent\: side}

\displaystyle \bf  \red \star  \:  \bf \: Cot\:  A =  \frac{1}{Tan\: A}   =  \frac{1}{ \frac{Opposite \: side }{Adjacent\: side} }  = \frac{Adjacent \: side}{Opposite \: side} \:  \: or \:  \:  \frac{Cos \: A}{Sin \: A}

 \:

Similar questions