Math, asked by arpanghosal1234, 5 months ago

answered me please ​

Attachments:

Answers

Answered by Arceus02
1

Question in English:-

  • Given that,  \sf \dfrac{a}{4-a} + \dfrac{b}{4-b} + \dfrac{c}{4-c} = 1 , show that \sf \dfrac{1}{4-a} + \dfrac{1}{4-b} + \dfrac{1}{4-c} = 1.

\\

Proof:-

First considering what is given,

 \sf \dfrac{a}{4 - a}  +  \dfrac{b}{4 - b}  +  \dfrac{c}{4 - c}  = 1

The main concept is to somehow cancel the "a", "b" and "c" in the numerator term and make it 1 in order to reach the proof.

For this,

Adding 3 to both sides,

  \sf \longrightarrow \dfrac{a}{4 - a}  +  \dfrac{b}{4 - b}  +  \dfrac{c}{4 - c} + 3  = 1 + 3

Now, in LHS we will split 3 in this way,

 \sf \longrightarrow \dfrac{a}{4 - a}  + 1 +  \dfrac{b}{4 - b}   + 1+  \dfrac{c}{4 - c} + 1  = 4

Taking LCM for the terms in LHS,

 \sf \longrightarrow  \dfrac{a + 4 - a}{4 - a}  +  \dfrac{b + 4 - b}{4 - b}  +  \dfrac{c + 4 - c}{4 - c}  = 4

 \sf \longrightarrow  \dfrac{ 4}{4 - a}  +  \dfrac{ 4 }{4 - b}  +  \dfrac{ 4 }{4 - c}  = 4

Now dividing LHS and RHS by 4,

 \sf \longrightarrow   \dfrac{1}{4} \bigg( \dfrac{ 4}{4 - a}  +  \dfrac{ 4 }{4 - b}  +  \dfrac{ 4 }{4 - c} \bigg)  =  \dfrac{1}{4} \times  4

 \sf \longrightarrow   \dfrac{ 4}{4(4 - a)}  +  \dfrac{ 4 }{4(4 - b)}  +  \dfrac{ 4 }{ (4 - c )} =  1

On cancelling 4 from numerator and denominator of each term in LHS,

 \sf \longrightarrow   \dfrac{  \cancel{4}}{ \cancel{4} (4 - a)}  +  \dfrac{  \cancel{4} }{ \cancel{4}(4 - b)}  +  \dfrac{  \cancel{4} }{  \cancel{4}(4 - c )} =  1

 \longrightarrow   \underline{ \underline{ \sf{ \green{ \dfrac{  1}{ 4 - a}  +  \dfrac{  1 }{ 4 - b}  +  \dfrac{  1 }{  4 - c } =  1}}}}

Hence proved.

Similar questions