answered my question
Attachments:
Answers
Answered by
0
Step-by-step explanation:
y−x
dx
dy
=x+y
dx
dy
Substitute
y=vx⇒
dx
dy
=v+x
dx
dv
∴−x(x
dx
dv
+v)+xv=x+x(x
dx
dv
+v)v
⇒
dx
dv
=
x(v+1)
−v
2
−1
⇒
−v
2
−1
v+1
dx
dv
=
x
1
Integrating both sides w.r.t x we get
∫
−v
2
−1
v+1
dx
dv
dx=∫
x
1
dx
⇒tan
−1
v−
2
1
log(v
2
+1)=logx+c⇒kx=e
−
x
y
Similar questions