Physics, asked by ankusoumya1234, 2 months ago

Answet the following in detail:-


The mass of an iron ball is 800 g.What should be the volume of the ball if the density is 7.87 g cm^-3? Also find the density in the Sl unit and the realtive density.​

Answers

Answered by Nereida
31

Answer :

Mass of the iron ball = m = 800 g

Density of the iron ball = ρ = 7.87 g cm^-3

Finding the volume :

Density = Mass/Volume

⇒ 7.87 = 800/Volume

⇒ Volume = 800/7.87

⇒ Volume = 101.65 cm³

Finding the density in SI unit :

⇒ (7.87 g/cm^-3) × 1000

7870 kg/m^-3

Finding Relative Density :

⇒ Relative Density = Density of substance/Density of water

⇒ Relative Density = 7.87/1 = 7.87

Extra Information:

  • Volume is the basic physical quantity and it expresses the three dimensional extent of an object.
  • Mass is the amount of matter in a object. Mass and weight are not the similar quantities.
  • Density is the measure of mass per unit of volume.
  • Relative Density is the ratio of density of the substance to that of the density of water.
Answered by MяMαgıcıαη
141

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\frak{\quad Question : \quad}}

The mass of an iron ball is 800 g. What should be the volume of the ball if the density is 7.87 g cm^-3 ? Also find the density in the Sl unit and the realtive density.

\underline{\frak{\quad Answer : \quad}}

  • Volume = 101.65 cm³
  • Density in SI unit = 7870 kg/m^-3
  • Relative Density = 7.87

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\underline{\frak{\quad Explanation : \quad}}

For finding volume , using formula :

\qquad\red\bigstar\:{\tiny{\underline{\boxed{\bf{\green{Density = \dfrac{Mass}{Volume}}}}}}}

Putting all known values :

\dashrightarrow\qquad\tt 7.87 = \dfrac{800}{Volume}

By cross multiplication :

\dashrightarrow\qquad\tt Volume = \dfrac{800}{7.87}

\dashrightarrow\qquad\tt Volume = \dfrac{\cancel{800}}{\cancel{7.87}}

\dashrightarrow\qquad{\boxed{\frak{ Volume = \pink{101.65\:cm^3}}}}\:\purple\bigstar

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Finding density in SI unit :

\dashrightarrow\qquad\tt 7.87 \:\times\:1000

\dashrightarrow\qquad{\boxed{\frak{\pink{ 7870\:kg/m^{-3}}}}}\:\purple\bigstar

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

For finding relative density , using formula :

\qquad\red\bigstar\:{\tiny{\underline{\boxed{\bf{\green{Relative\:Density = \dfrac{Density_{(substance)}}{Density_{(water)}}}}}}}}

Putting all known values :

\dashrightarrow\qquad\tt Relative\:Density = \dfrac{7.87}{1}

\dashrightarrow\qquad{\boxed{\frak{ Relative \:Density = \pink{7.87}}}}\:\purple\bigstar

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Hence,

  • Volume = 101.65 cm³
  • Density in SI unit = 7870 kg/m^-3
  • Relative Density = 7.87

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions