Math, asked by praizy, 10 months ago

anti derivative of ln(1+x)/(1+x^2)​

Answers

Answered by Anonymous
12

Answer:

 log_{e} \frac{1 + x}{1 +  {x}^{2} } \\  \\ we \: know \: that  \:  log_{e} = 1 \\  \\ take \: f(x) =  \frac{1 + x}{1 +  {x}^{2} }  \\  \\ f'(x) = \frac{( 1 +  {x}^{2} ) \frac{d}{dx} (1 + x) - (1 + x) \frac{d}{dx} (1 +  {x}^{2} )}{(1 +  {x}^{2})  ^{2} }  \\  \\  \:  \:  \:  \:  \:  \:  \:   \:  \: =   \frac{(1 +  {x})^{2}(1) - (1 + x)(2x) }{(1 +  {x}^{2} ) ^{2} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{(1 + x ^{2} ) - 2x - 2 {x}^{2} }{(1 +  {x}^{2} ) ^{2} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1  -   {x}^{2} - 2x }{ (1 +  {x}^{2} ) ^{2} }  \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions