Math, asked by amanatsahibb, 1 month ago

❥Anushka࿐​​
Q1.integration of √ ( a² - x² ) dx is?​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \sqrt{ {a}^{2}  -  {x}^{2} } \: dx

To solve this integral, we use method of Substitution.

\rm :\longmapsto\:Put \: x = a \: siny

\rm :\longmapsto\:dx = a \: cosy \: dy

and

\rm :\longmapsto\:y =  {sin}^{ - 1}\dfrac{x}{a}

So, given integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int\sf  \sqrt{ {a}^{2} -  {a}^{2}  {sin}^{2} y}  \:( a \: cosy )\: dy

\rm \:  =  \:  a\: \displaystyle\int\sf  \sqrt{ {a}^{2}(1 -    {sin}^{2} y)}  \: cosy \: dy

\rm \:  =  \: a \: \displaystyle\int\sf  \sqrt{ {a}^{2}({cos}^{2} y)}  \: cosy \: dy

\rm \:  =  \: a \: \displaystyle\int\sf a \: cosy \: cosy \: dy

\rm \:  =  \:   {a}^{2} \: \displaystyle\int\sf  {cos}^{2}y \: dy

\rm \:  =  \:  \dfrac{ {a}^{2} }{2} \: \displaystyle\int\sf  2{cos}^{2}y \: dy

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \displaystyle\int\sf  (1 + cos2y) \: dy

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg(y + \dfrac{sin2y}{2} \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg(y + \dfrac{2siny \: cosy}{2} \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg(y + siny \: cosy \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg(y + siny \:  \sqrt{1 -  {sin}^{2} y}  \bigg)  + c

On substituting back the values we get

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg( {sin}^{ - 1}\dfrac{x}{a} + \dfrac{x}{a}  \:  \sqrt{1 -   {\bigg(\dfrac{x}{a} \bigg) }^{2} }  \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg( {sin}^{ - 1}\dfrac{x}{a} + \dfrac{x}{a}  \:  \sqrt{1 -   {\bigg(\dfrac{ {x}^{2} }{ {a}^{2} } \bigg) } }  \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg( {sin}^{ - 1}\dfrac{x}{a} + \dfrac{x}{a}  \:  \sqrt{\dfrac{ {a}^{2} -  {x}^{2}  }{ {a}^{2} } }  \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \: \bigg( {sin}^{ - 1}\dfrac{x}{a} + \dfrac{x}{ {a}^{2} }  \:  \sqrt{{a}^{2} -  {x}^{2} }  \bigg)  + c

\rm \:  =  \:  \dfrac{a {}^{2} }{2} \:{sin}^{ - 1}\dfrac{x}{a} + \dfrac{x}{ 2 }\:  \sqrt{{a}^{2} -  {x}^{2} }+ c

Hence,

\boxed{ \rm{ \displaystyle\int\rm \sqrt{ {a}^{2} -  {x}^{2}}  \: dx =  \:  \dfrac{a {}^{2}}{2} \:{sin}^{ - 1}\dfrac{x}{a} + \dfrac{x}{ 2 }\:  \sqrt{{a}^{2} -  {x}^{2} }+ c}}

Formula Used:-

\boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

\boxed{ \bf{ \: 1 + cos2x =  {2cos}^{2}x}}

\boxed{ \bf{ \: sin2x = 2sinx \: cosx}}

\boxed{ \bf{ \: \displaystyle\int\sf k \: dx = x + c}}

\boxed{ \bf{ \: \displaystyle\int\sf  {x}^{n}  \: dx = x \frac{ {x}^{n + 1} }{n + 1} + c}}

Answered by TrustedAnswerer19
64

Answer:

 \orange{   \sf\displaystyle \int \sqrt{ {a}^{2} -  {x}^{2}  }  = \sf =  \frac{ {a}^{2} }{2}   {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} }  + c}

Step-by-step explanation:

 \bf \: given \\  \displaystyle \:  \int \sqrt{ {a}^{2} -  {x}^{2}  } \:  dx \\  \sf  substitute \\  \sf\:  \: x = asin \theta \:  \implies \: \theta =  {sin}^{ - 1}  \frac{x}{a}  \:  \:  \: and \\  \sf \:  \pink{dx = acos\theta \: d\theta \: } \\  \bf \: now \\  \\   \displaystyle \:  \int \sqrt{ {a}^{2} -  {x}^{2}  }  \: dx \\   =  \sf \int \sqrt{ {a}^{2}  -  {a}^{2}  {sin}^{2} \theta}  \:  \: acos\theta \: d\theta \\ =   \sf \int \sqrt{ {a}^{2} (1 -  {sin}^{2} \theta)}  \:  \: acos\theta \: d\theta \\   =   \sf \int \: a \sqrt{ {1 -  {sin}^{2} \theta} }  \: a  cos\theta \: d\theta \\  =    \sf \int {a}^{2} . {cos}^{2} \theta \: d\theta \:  \\  =    \sf {a}^{2}  \int \:  \frac{1}{2} (1 + cos2\theta) \: d\theta \:  \:  \:  \:    \sf \green{\{ \because \: 2 {cos}^{2} \theta = 1 + cos2\theta \}} \\   \sf=  \frac{ {a}^{2} }{2} (\theta +  \frac{sin2\theta}{2} ) + c \:  \:  \:  \:  \:  \:  \:  \ \sf \red{ \{c = integral \: constant \}} \\  \\  \sf =  \frac{ {a}^{2} }{2} (\theta +  \frac{2sin\theta \: cos\theta}{2} ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2}(\theta + sin \theta \:  \sqrt{1 -  {sin}^{2}\theta } ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2} ( {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{a}  \sqrt{1 -  \frac{ {x}^{2} }{ {a}^{2} } } ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2}  {sin}^{ - 1} \frac{x}{a}  +  \frac{ {a}^{2} }{2} . \frac{x}{ {a}^{2} }  \sqrt{ {a}^{2} -  {x}^{2}  }  + c \\  \\  \sf =  \frac{ {a}^{2} }{2}   {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} }  + c

Similar questions