Math, asked by amanatsahibb, 8 days ago

❥Anushka࿐​​
Q1.integration of √ ( a² - x² ) dx is?​

Answers

Answered by PRINCE100001
13

Answer:

Step-by-step explanation:

Question :

\dagger\ \; \displaystyle \sf \red{\int \sqrt{a^2-x^2}\ dx\ =\ ?}†</p><p>

Solution :

\displaystyle \sf \int \sqrt{a^2-x^2}\ dx</p><p>

Use Trigonometric sub. ,

Let , x = a sin θ

➠ dx = a cos θ dθ

\begin{gathered}\begin{gathered}\\ \longrightarrow \displaystyle \sf \int \sqrt{a^2-(a\ sin\ \theta)^2}\ (a\ cos\ \theta\ d \theta ) \\\end{gathered} \end{gathered} </p><p></p><p>

\longrightarrow \displaystyle \sf a\ \int \sqrt{a^2-a^2.sin^2 \theta}\ \ cos\ \theta\ d \theta</p><p>

\longrightarrow \displaystyle \sf a\ \int \sqrt{a^2(1-sin^2 \theta)}\ \ cos\ \theta\ d \theta

\longrightarrow \displaystyle \sf a^2\ \int \sqrt{1-sin^2 \theta}\ \ cos\ \theta\ d \theta

 \longrightarrow \displaystyle \sf a^2\ \int \sqrt{cos^2 \theta}\ \ cos\ \theta\ d \theta

\longrightarrow \displaystyle \sf a^2\ \int cos^2 \theta\ d \theta

\longrightarrow \displaystyle \sf a^2\ \int \left( \dfrac{1+cos\ 2\theta}{2} \right)\ d \theta

 \longrightarrow \displaystyle \sf \dfrac{a^2}{2}\ \left[ \theta + \dfrac{sin\ 2 \theta}{2}\right]+ c

\longrightarrow \displaystyle \sf \dfrac{a^2}{2}\ \left[ \theta + sin\ \theta .cos\ \theta \right]+ c </p><p>

\begin{gathered}\begin{gathered}\\ \longrightarrow \sf \dfrac{a^2}{2} \left[ sin^{-1}\ \dfrac{x}{a} + \dfrac{x}{a}.\dfrac{\sqrt{a^2-x^2}}{a} \right]+c \\\end{gathered} \end{gathered} </p><p></p><p>	</p><p>

\longrightarrow \sf \dfrac{a^2}{2} \left[ sin^{-1}\ \dfrac{x}{a} + \dfrac{x . \sqrt{a^2-x^2}}{a^2} \right]+c</p><p>

</p><p>\longrightarrow \sf \pink{\dfrac{a^2}{2}\ sin^{-1}\ \dfrac{x}{a} + \dfrac{x}{2}\ \sqrt{a^2-x^2} +c}

★ ═════════════════════ ★

\displaystyle \sf \green{ \int \sqrt{a^2-x^2}\ dx = \dfrac{a^2}{2}\ sin^{-1}\ \dfrac{x}{a} + \dfrac{x}{2}\ \sqrt{a^2-x^2} +c}</p><p>

Answered by TrustedAnswerer19
88

Answer:

 \orange{   \sf\displaystyle \int \sqrt{ {a}^{2} -  {x}^{2}  }  = \sf =  \frac{ {a}^{2} }{2}   {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} }  + c}

Step-by-step explanation:

 \bf \: given \\  \displaystyle \:  \int \sqrt{ {a}^{2} -  {x}^{2}  } \:  dx \\  \sf  substitute \\  \sf\:  \: x = asin \theta \:  \implies \: \theta =  {sin}^{ - 1}  \frac{x}{a}  \:  \:  \: and \\  \sf \:  \pink{dx = acos\theta \: d\theta \: } \\  \bf \: now \\  \\   \displaystyle \:  \int \sqrt{ {a}^{2} -  {x}^{2}  }  \: dx \\   =  \sf \int \sqrt{ {a}^{2}  -  {a}^{2}  {sin}^{2} \theta}  \:  \: acos\theta \: d\theta \\ =   \sf \int \sqrt{ {a}^{2} (1 -  {sin}^{2} \theta)}  \:  \: acos\theta \: d\theta \\   =   \sf \int \: a \sqrt{ {1 -  {sin}^{2} \theta} }  \: a  cos\theta \: d\theta \\  =    \sf \int {a}^{2} . {cos}^{2} \theta \: d\theta \:  \\  =    \sf {a}^{2}  \int \:  \frac{1}{2} (1 + cos2\theta) \: d\theta \:  \:  \:  \:    \sf \green{\{ \because \: 2 {cos}^{2} \theta = 1 + cos2\theta \}} \\   \sf=  \frac{ {a}^{2} }{2} (\theta +  \frac{sin2\theta}{2} ) + c \:  \:  \:  \:  \:  \:  \:  \ \sf \red{ \{c = integral \: constant \}} \\  \\  \sf =  \frac{ {a}^{2} }{2} (\theta +  \frac{2sin\theta \: cos\theta}{2} ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2}(\theta + sin \theta \:  \sqrt{1 -  {sin}^{2}\theta } ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2} ( {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{a}  \sqrt{1 -  \frac{ {x}^{2} }{ {a}^{2} } } ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2}  {sin}^{ - 1} \frac{x}{a}  +  \frac{ {a}^{2} }{2} . \frac{x}{ {a}^{2} }  \sqrt{ {a}^{2} -  {x}^{2}  }  + c \\  \\  \sf =  \frac{ {a}^{2} }{2}   {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} }  + c

Similar questions