Math, asked by kautilyafoundation11, 6 months ago

Anvar saves some amount every month . in first three months he saves ₹ 200, ₹250 and ₹ 300 respectively. in which month will he save ₹ 1000 ?​

Answers

Answered by steveraju135
5

Answer:

a+(n-1)×d

1000=200+(n-1)×50

1000=200+50n-50

1000=150+50n

50n=1000-150

n=850/50

n=17

Answered by kamalhajare543
14

Answer:

Saving in first month ₹200; Saving in second month ₹250;...200,250,300. (this is an A.P)

 \sf \: Here  \: A=200, \:  d=50, \:  Let's \:  find \:  using \:  t_n

 \sf \: Formula  \: and \:  then \:  find  \: s_n

 \sf \: t_n=a+(n-1)d

\sf \implies \:  \sf200 + (n - 1) - 50 \\  \\  \sf = 200 + 50n - 50 \\  \\  \sf \: 1000 = 150 + 20n

\sf \implies \: 150n + 50n = 1000 \\  \\  \sf \:  = 50n = 1000 - 150 \\  \\  \sf \:   = 50n = 850 \\  \\  \sf \therefore \: n = 17

 \red{ \sf \: In \: the  \: 17 {}^{th}  \: month \: he \: will \: save \: ₹1000}

Let's find that in 17 month how much total amount is saves.

\sf \implies \sf \: s_n =  \frac{n}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg[2a + (n - 1)d \bigg] \\  \\   =   \sf \: \frac{17}{2}   \: \: \bigg[2 \times 200 + (17 - 1) \times 50\bigg] \\  \\  \sf =  \frac{17}{2}  \:  \:  \:  \bigg[400 + 800\bigg] \\  \\ \sf \: \sf \implies17 \times 600 \\  \\   \sf \pink{= 10200}

Hence, In 17 months total saving is ₹10200.

Similar questions