Math, asked by Anonymous, 1 month ago

Any best user tell me if we subtract fraction the denomination remains same if they are like and the answer comes in fraction my answer is coming 9/7 and it's only 9.


How ? Explain me乁( •_• )ㄏ​

Attachments:

Answers

Answered by kinzal
5

Answer :-

→ If x = 2 then find , \sf π x + y = 9

 \implies \sf π x + y = 9  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies\sf  \frac{22}{7}  \times 2 + y = 9 \:  \\  \\  \implies \sf  \frac{44}{7}  + y = 9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \sf y = 9 -  \frac{44}{7}  \:  \:  \:  \:  \:  \:  \:  \: \:  \\  \\ \sf [ take \:  \:  LCM  \:  \: of \:  \:  7 ]  \\  \\  \implies \sf y =  \frac{9 \times 7}{7}  -  \frac{44}{7}  \\  \\  \implies \sf y =  \frac{63 - 44}{7}  \:  \:  \:  \:  \:  \:  \:  \\  \\   \implies \sf y =  \red{ \frac{19}{7} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Checking :-

 \implies\sf π x + y \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \sf  \frac{22}{7}  \times 2 +  \frac{19}{7}  \\  \\  \implies \sf  \frac{44}{7}  +  \frac{19}{7}  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \sf  \frac{ \cancel{63} ^{ \:  \: 9} }{ \cancel7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \sf  = \red{9} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \sf LHS = RHS  \:

I hope it helps you ❤️✔️

you can find out your mistake

Answered by IIItzUrDewaniII
4

Answer:

oye ye sach he kiya..●_●

ya fir edit kiya he..◐.◐

Attachments:
Similar questions