Math, asked by Anonymous, 1 year ago

-------------------------------------------------------------

Any maths genius


Class 12.


If y = √x(x+4)^3/2/+(4x-3)^4/3 , find dy/dx ​

Answers

Answered by fanbruhh
18

 \huge \bf \red{ \mid{ \overline{ \underline{ANSWER}}} \mid}

 \bf{GIVEN \colon - }

 \sf \huge {y =  \frac{ \sqrt{x}(x + 4) ^{ \frac{3}{2} }  }{(4x - 3) ^{ \frac{4}{3} } } }..(1)

→ Taking logorithm on both sides of (1), we get

 \sf \: log \: y =  \frac{1}{2} \: log \: x +  \frac{3}{2}   \: log (x + 4) -  \frac{4}{3}  \\   \sf \: log(4x - 3)

→ On differentiating both sides w.r.t.x , we get

  \sf \:  \frac{1}{y} .  \frac{dy}{dx}   =  \frac{1}{2} . \frac{1}{x}  +  \frac{3}{2} . \frac{1}{(x + 4)}  -  \frac{4}{3} . \frac{4}{(4x - 3)}

 \sf \implies \frac{dy}{dx}  = y( \frac{1}{2x}  +  \frac{3}{2(x + 4)}  -  \frac{16}{3(4x - 3)} ) \\   \\  \sf \:   \frac{ \sqrt{x} (x + 4) ^{ \frac{3}{2} } }{(4x - 3) ^{ \frac{4}{3} } } .( \frac{1}{2x}  +  \frac{3}{2(x + 4)}  -  \frac{16}{3(4x - 3)} )

Answered by rahulkumarbxr1818
0

Answer:

hiiiiiiiiiiiiiiiiiiiiiiiiiii

Similar questions