Math, asked by BrainlyFather0001Fan, 1 month ago

ANY MODERATORS,★S, GENIUS AND OTHER BEST USERS. SPAMMERS STAY AWAY. I NEED ANSWER PLEASE!!!​

Answers

Answered by Renumahala2601
1

Answer:

Answer :</p><p></p><p>{ 1 , 2 , 3 , 4 , 5 }</p><p></p><p>To Find :</p><p></p><p>The solution of given inequality on the number line.</p><p></p><p>SolutioN :</p><p></p><p>\begin{gathered}\tt \rightarrow \: - \frac{2}{3} \leq \dfrac{x}{3} \leq \dfrac{2}{3} , \: where \: x \: ∈ \: R.\\ \\ \end{gathered}→−32≤3x≤32,wherex∈R.</p><p></p><p>⚝ Taking Inequality 1.</p><p></p><p>\begin{gathered}\tt \rightarrow \: - \frac{2}{3} \leq \dfrac{x}{3} - 1 . \\ \\ \end{gathered}→−32≤3x−1.</p><p></p><p>\begin{gathered}\tt \rightarrow \: 1- \frac{2}{3} \leq \dfrac{x}{3} . \\ \\ \end{gathered}→1−32≤3x.</p><p></p><p>\begin{gathered}\tt \rightarrow \: 1 \leq x. \: \: \: - (1)\\ \\ \end{gathered}→1≤x.−(1)</p><p></p><p>⚝ Taking Inequality 2.</p><p></p><p>\begin{gathered}\tt \rightarrow \: \frac{x}{3} - 1 \leq \dfrac{2}{3} . \\ \\ \end{gathered}→3x−1≤32.</p><p></p><p>\begin{gathered}\tt \rightarrow \: \frac{x}{3} \leq \dfrac{5}{3} . \\ \\ \end{gathered}→3x≤35.</p><p></p><p>\begin{gathered}\tt \rightarrow \: x \leq 5. \: \: \: -(2) \\ \\ \end{gathered}→x≤5.−(2)</p><p></p><p>From equation 1 and 2, we get.</p><p></p><p>•°• Solution of set is { 1 , 2 , 3 , 4 , 5 }</p><p></p><p>

Attachments:
Similar questions