any one. 100 points question
Attachments:
Answers
Answered by
7
Go through the following attachment
Attachments:
Answered by
5
Here is your answer
----------------------------------------------------------------------------------------------------------------
Given that a, b, c are in A. P.
________________________________________________________
⇒ 2b = a + c. = ……. (1) =
And a2, b2, c2 are in H. P.
________________________________________________________
⇒
⇒ (a – b)(a + b)/b2a2
= (b – c) (b + c)/b2c2
⇒ ac2 + bc2 = a2b + a2c [∵ a – b = b – c]
⇒ ac (c – a) + b (c – a) (c + a)
= 0
⇒ (c – a) (ab + bc + ca)
= 0
⇒ either c – a = 0 or ab + bc + ca
= 0
⇒ either c = a or (a+ c) b + ca
= 0 and then form (i) 2b2 + ca
= 0
Either a = b = c or b2
= a (-c/2)
________________________________________________________
a, b, -c/2 are in G. P. Hence Proved
----------------------------------------------------------------------------------------------------------------
Given that a, b, c are in A. P.
________________________________________________________
⇒ 2b = a + c. = ……. (1) =
And a2, b2, c2 are in H. P.
________________________________________________________
⇒
⇒ (a – b)(a + b)/b2a2
= (b – c) (b + c)/b2c2
⇒ ac2 + bc2 = a2b + a2c [∵ a – b = b – c]
⇒ ac (c – a) + b (c – a) (c + a)
= 0
⇒ (c – a) (ab + bc + ca)
= 0
⇒ either c – a = 0 or ab + bc + ca
= 0
⇒ either c = a or (a+ c) b + ca
= 0 and then form (i) 2b2 + ca
= 0
Either a = b = c or b2
= a (-c/2)
________________________________________________________
a, b, -c/2 are in G. P. Hence Proved
Similar questions