Math, asked by subsubkingbro, 5 hours ago

any one can answer me plz I want to study for my exam .my teacher having health promblem so she can't answer any intelligent in brainly plz answer plz ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

  • ABCD is a square of side x cm

  • EFGH is a square of side y cm

Further given that,

  • Sum of all sides = 52 cm

It means

  • Perimeter of square ABCD + Perimeter of square EFGH is 52 cm

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ Perimeter_{[square]} \:  =  \: 4 \times side \: }}}

So, using this, we have

\rm :\longmapsto\:4x + 4y = 52

\rm :\longmapsto\:4(x + y) = 52

\rm\implies \:\boxed{\tt{ x + y = 13}} -  -  -  - (1)

Now, Further given that,

  • If square EFGH is cutting out from square ABCD, the area of remaining part is 91 square cm.

It means

\rm :\longmapsto\:Area_{[ABCD]} - Area_{[EFGH]} = 91

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ Area_{[square]} = 4 \times side}}}

So, using this, we get

\rm :\longmapsto\: {x}^{2} -  {y}^{2} = 91

can be further rewritten as using algebraic Identity,

\rm :\longmapsto\:(x + y)(x - y) = 91

\rm :\longmapsto\:13(x - y) = 91

\red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}

\rm\implies \:\boxed{\tt{ x  -  y = 7}} -  -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2x = 13 + 7

\rm :\longmapsto\:2x = 20

\rm\implies \:\boxed{ \:  \bf \:  \: x \:  =  \: 10 \:cm \:   \: }

On substituting the value of x in equation (1), we have

\rm :\longmapsto\:10 + y = 13

\rm :\longmapsto\:y = 13 - 10

\rm\implies \:\boxed{ \:  \bf \:  \: y \:  =  \: 3 \:cm \:   \: }

So,

\rm\implies \:\boxed{Side_{[square \: EFGH]} = y \:  = 3 \: cm}

and

\rm\implies \:\boxed{Side_{[square \: ABCD]} = x \:  = 10 \: cm}

Also,

\rm :\longmapsto\:\boxed{Area_{[square \: ABCD]} =  {10}^{2}  = 100 \:  {cm}^{2} }

\rm :\longmapsto\:\boxed{Area_{[squareEFGH] }\:  =  {3}^{2} = 9 \:  {cm}^{2}  }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions