Any one help me please
if A +B = 45 then prove that (1+tanA)(1+tanB) =2
Answers
Answered by
1
Step-by-step explanation:
Given :
A + B = 45
Now,
tan(A + B ) = 1 [•°• tan45° = 1 ]
By Using trigonometric identity for tan.
tan( A + B ) =
= 1
tanA + tanB = 1 - tanAtanB
tanA + tanB + tanAtanB = 1 .......(i)
Now ,
To prove : (1+tanA)(1+tanB) =2
Take L.H.S
(1+tanA)(1+tanB)
1+ tanA + tanB +tanAtanB ....(ii)
Now put the value of expression from (i) in (ii)
1+ (tanA + tanB +tanAtanB)
1 + 1
= 2
L.H.S = R.H.S = 2
hence proved.
Similar questions