Math, asked by Avirsh, 1 year ago

Any one help me please

if A +B = 45 then prove that (1+tanA)(1+tanB) =2​

Answers

Answered by Brainlyconquerer
1

Step-by-step explanation:

Given :

A + B = 45

Now,

tan(A + B ) = 1 [•°• tan45° = 1 ]

By Using trigonometric identity for tan.

\implies tan( A + B ) = \frac{TanA + tanB }{1 - tanAtanB}

\implies \frac{TanA + tanB }{1 - tanAtanB} = 1

\implies tanA + tanB = 1 - tanAtanB

\implies tanA + tanB + tanAtanB = 1 .......(i)

Now ,

To prove : (1+tanA)(1+tanB) =2

Take L.H.S

\implies (1+tanA)(1+tanB)

\implies 1+ tanA + tanB +tanAtanB ....(ii)

Now put the value of expression from (i) in (ii)

\implies 1+ (tanA + tanB +tanAtanB)

\implies 1 + 1

= 2

L.H.S = R.H.S = 2

hence proved.

Similar questions