Math, asked by symashah000, 1 month ago

Any one who can give me the solution.
prove that​

Attachments:

Answers

Answered by MEENUUUUU
1
Hope this helps !
Thank you !!
Goodnight
Attachments:
Answered by mathdude500
3

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:tan100\degree  + tan70\degree  + tan10\degree  = tan100\degree tan70\degree tan10\degree

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\:80 \degree \:  =  \: 70\degree  + 10\degree

So,

\rm :\longmapsto\:tan80\degree  = tan(70\degree  + 10\degree )

We know,

 \red{\boxed{ \bf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}}

So, using this result,

\rm :\longmapsto\:tan80\degree  = \dfrac{tan70\degree  + tan10\degree }{1 - tan70\degree tan10\degree }

\rm :\longmapsto\:tan80\degree  - tan80\degree tan70\degree tan10\degree  = tan70\degree  + tan10\degree

Now, we know

\purple{\bf :\longmapsto\:tan80\degree  = tan(180\degree  - 100\degree ) =  - tan100\degree }

So, above can be rewritten as

\rm :\longmapsto\: - tan100\degree +  tan100\degree tan70\degree tan10\degree  = tan70\degree  + tan10\degree

\rm :\longmapsto\:  tan100\degree tan70\degree tan10\degree  =tan100\degree + tan70\degree  + tan10\degree

\rm :\longmapsto\:tan100\degree  + tan70\degree  + tan10\degree  = tan100\degree tan70\degree tan10\degree

Hence, Proved

Additional Information :-

 \red{\boxed{ \bf{ \: tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanx \: tany}}}}

 \red{\boxed{ \bf{ \: sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}}}

 \red{\boxed{ \bf{ \: sin(x  -  y) = sinx \: cosy \:   -   \: siny \: cosx}}}

 \red{\boxed{ \bf{ \: cos(x  -  y) = cosx \: cosy \:    +    \: sinx \: siny}}}

 \red{\boxed{ \bf{ \: cos(x   +   y) = cosx \: cosy \: - \: sinx \: siny}}}

 \red{\boxed{ \bf{ \:  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}}

 \red{\boxed{ \bf{ \:  {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)}}}

Similar questions