Any point D is taken on the base BC of a triangle ABC and AD is produced to E, such that DE = AD.
Show that ar(triangle BCE) = ar(triangle ABC).
Answers
Answered by
4
ANSWER
Toprove:
AreaofΔBCE=areaofΔABC
proof:
InΔABE,
AD=DE(given)
∴BDisamedianofΔABE
⇒ar(ΔABD)=ar(ΔBED).......(1)
mediandividesatriangleintotwotrianglesofequalarea.
Similarly,
InΔACE
CDismedianofΔCED......(2)
Adding(1)and(2),
ar(ΔABD)ar(ΔACD)=ar(ΔBED)+ar(ΔCED)
orar(ΔABC)=ar(ΔBCE)
Hence,areaofΔBCE=areaofΔABC.
solution
Answered by
1
ANSWER
Toprove:
AreaofΔBCE=areaofΔABC
proof:
InΔABE,
AD=DE(given)
∴BDisamedianofΔABE
⇒ar(ΔABD)=ar(ΔBED).......(1)
mediandividesatriangleintotwotrianglesofequalarea.
Similarly,
InΔACE
CDismedianofΔCED......(2)
Adding(1)and(2),
ar(ΔABD)ar(ΔACD)=ar(ΔBED)+ar(ΔCED)
orar(ΔABC)=ar(ΔBCE)
Hence,areaofΔBCE=areaofΔABC.
star
Similar questions