Any Real Genius Here??
✨✨✨✨✨✨✨✨✨✨
1⃣If the remainder division of
by
is 21,Find the quotient and value of k
Hence find the zeros of cubic polynomial
Best Answer Will be marked as brainliest❤️❤️❤️
Answers
Step-by-step explanation:
Let p(x) = x³ + 2x² + kx + 3.
On dividing f(x) by x - 3, the remainder is 21.
Then, f(3) = 21
⇒ (3)³ + 2(3)² + k(3) + 3 = 21
⇒ 27 + 18 + 3k + 3 = 21
⇒ 3k + 48 = 21
⇒ 3k = -27
⇒ k = -9
∴ p(x) = x³ + 2x² - 9x + 3.
By division algorithm, we know that
p(x) = g(x) * q(x) + r(x)
⇒ x³ + 2x² - 9x + 3 = (x - 3) * q(x) + 21.
⇒ x³ + 2x² - 9x - 18 = (x - 3) * q(x)
⇒ (x³ + 2x² - 9x - 18) ÷ (x - 3) = q(x)
Long Division method:
x - 3) x³ + 2x² - 9x - 18 (x² + 5x + 6
x³ - 3x²
-------------------------
5x² - 9x - 18
5x² - 15x
----------------------
6x - 18
6x - 18
---------------------
0
i.e x³ + 2x² + kx - 18 = (x - 3)(x² + 5x + 6)
For zeroes,
⇒ (x - 3)(x² + 5x + 6) = 0
⇒ (x - 3)(x² + 2x + 3x + 6) = 0
⇒ (x - 3)(x(x + 2) + 3(x + 2)) = 0
⇒ (x - 3)(x + 2)(x + 3) = 0
⇒ x = 3, -2, -3.
Therefore:
Quotient = x² + 5x + 6
Value of k = -9
Zeroes of cubic polynomial = 3, -2, -3.
Hope it helps!
Dividend=Divisor×Quotient+Remainder
Given that,
Dividend=x³+2x²+kx+3
Divisor=x-3
Remainder=21
Now we have,
x³+2x²+kx+3=(x-3)quotient+21
(x³+2x²+kx-18)/(x-3)=quotient
Now the remainder will be equal to 0.
From above picture we get,
Remainder=0
3(k+15)-18=0
k+15=6
k=-9
Now eq1 we have,
x³+2x²-9x+3=(x-3)(x²+5x+6)+21
x³+2x²-9x-18=(x-3)(x²+2x+3x+6)
x³+2x²-9x-18=(x-3){x(x+2)+3(x+2)}
x³+2x²-9x-18=(x-3)(x+3)(x+2)
Therefore zeroes are 3 , -3 and -2