Math, asked by nidishtn9663, 7 months ago

Any tough explaination that 1+1=2 plz answer my question.
thanks

Answers

Answered by Anonymous
0

Step-by-step explanation:

The Principia Mathematica (often abbreviated PM) is a three-volume work on the foundations of mathematics written by the philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925–27, it appeared in a second edition with an important Introduction to the Second Edition, an Appendix A that replaced ✸9 and all-new Appendix B and Appendix C. PM is not to be confused with Russell's 1903 The Principles of Mathematics. PM was originally conceived as a sequel volume to Russell's 1903 Principles, but as PM states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of Principles of Mathematics... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions."

The title page of the shortened Principia Mathematica to ✸56

✸54.43: "From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2." – Volume I, 1st edition, p. 379 (p. 362 in 2nd edition; p. 360 in abridged version). (The proof is actually completed in Volume II, 1st edition, page 86, accompanied by the comment, "The above proposition is occasionally useful." They go on to say "It is used at least three times, in ✸113.66 and ✸120.123.472.")

I can remember Bertrand Russell telling me of a horrible dream. He was in the top floor of the University Library, about A.D. 2100. A library assistant was going round the shelves carrying an enormous bucket, taking down books, glancing at them, restoring them to the shelves or dumping them into the bucket. At last he came to three large volumes which Russell could recognize as the last surviving copy of Principia Mathematica. He took down one of the volumes, turned over a few pages, seemed puzzled for a moment by the curious symbolism, closed the volume, balanced it in his hand and hesitated....

Hardy, G. H. (2004) [1940]. A Mathematician's Apology. Cambridge: University Press. p. 83. ISBN 978-0-521-42706-7.

He [Russell] said once, after some contact with the Chinese language, that he was horrified to find that the language of Principia Mathematica was an Indo-European one

Littlewood, J. E. (1985). A Mathematician's Miscellany. Cambridge: University Press. p. 130.

PM, according to its introduction, had three aims: (1) to analyze to the greatest possible extent the ideas and methods of mathematical logic and to minimize the number of primitive notions and axioms, and inference rules; (2) to precisely express mathematical propositions in symbolic logic using the most convenient notation that precise expression allows; (3) to solve the paradoxes that plagued logic and set theory at the turn of the 20th century, like

Similar questions