Math, asked by mehakkatoch959, 1 day ago

anybody give the answer​

Attachments:

Answers

Answered by MysticSohamS
3

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

here \: given \: equations \: are \:  \\ 5 \div  \sqrt{x} - 3 \div  \sqrt{ y} = 1 \div 6 \\ 3 \div  \sqrt{x} + 4 \sqrt{y} = 3

so \:  \: 5 \div  \sqrt{x} - 3 \sqrt{y} =1 \div 6 \: can \: be \: written \: as \: 5 \times 1 \div  \sqrt{x} - 3 \times 1 \div  \sqrt{y} = 1 \div 3 \\  \\ similarly \: 3 \div  \sqrt{x} + 4 \sqrt{y} = 3 \: can \: be \: written \: as \: 3 \times 1 \div  \sqrt{x} + 4 \times 1 \div  \sqrt{y}  = 3

so \: let  \: \: 1 \div  \sqrt{x} = m  \\ 1 \div  \sqrt{y} = n

resubstituting \: these \: values \: we \: get \\ 5m - 3n = 1 \div 6 \\ ie \: 6(5m - 3n) = 1 \\ 30m - 18n = 1 \:  \:  \:  \:  \: \:  \:  \:  \:  (1) \\  \\ 3m + 4n = 3 \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

multiplying \: (2) \: by \: 10 \\ we \: get \\ 30m + 40n = 30 \:  \:  \:  \:  \:  \:  \:  \: (3) \\  \\ subtracting \: (1) \: from \: (3) \\ we \: get \\ 58n = 29 \\ ie \: n = 1 \div 2

substitute \: value \: of \: n \: in \: any \: of \: three \: equations \:  \\ we \: get \\ m = 1 \div 3 \\  \\ resubstituting \: the \: values \: of \: m \: and \: n \: as \: 1 \div  \sqrt{x}  \: and \:  \: 1 \div  \sqrt{y}  \:  \: respectively \\ we \: get \\ 1 \div  \sqrt{x}  = m \\ 1 \div  \sqrt{y}  = n \\ so \: 1 \div  \sqrt{x}  = 1 \div 3 \\ 1 \div  \sqrt{y}  = 1 \div 2 \\

so \: hence \:  \\  \sqrt{x}  = 3 \\  \sqrt{y}  = 2 \\ squaring \: both \: sides \\ we \: get \\ x = 9 \\ y = 4

so \: thus \\ (x  \: and \:  y) = (9 \: and \: 4) \: respctively \: is \: solution \: of \: above \: linear \: equations

Similar questions