Math, asked by Anonymous, 9 months ago

anybody help me to solve out this question please it's urgent
the one who answer right I will mark as brainlist or follow also

please help me......

Attachments:

Answers

Answered by BrainlyIAS
19

Answer

  • ∠ DCE = 60°

Given

  • Everything is in attachment ( question )

To Find

  • \rm \angle{DCE}

Solution

Let angles be 3x , 2x , x respectively .

\rm \angle{A}+\angle B+\angle C=180\ [Since,Angle\ in\ \Delta\ is\ 180^0]\\\\\implies \rm 3x+2x+x=180\\\\\implies \rm 6x\ =180\\\\\implies \rm x=30^0

\rm So, \angle A=3x=90^0 ,\angle B=2x=60^0,\angle C=x=30^0

Since , ∠ BCA + ∠ ACD + ∠ DCE = 180° [ Straight line having 180° ]

⇒ ∠C + ∠ ACD + ∠ DCE = 180°

⇒ 30° + 90° + ∠ DCE = 180°

⇒ 120° + ∠ DCE = 180°

⇒ ∠ DCE = 180 - 120

∠ DCE = 60°

Answered by MaIeficent
49
\large \bf \red{ {\underline { \underline{Given:-}}}}

\sf In \: a \: \triangle ABC \: \angle A: \angle B :\: \angle C = 3:2:1

• CD ⊥ AC

\large \bf \blue{ {\underline { \underline{To\:Find:-}}}}

• The measure of ∠ ECD

\large \bf \green{ {\underline { \underline{Solution:-}}}}

Let ∠BAC = 3x , ∠ABC = 2x and ∠ACB = x

As we know that the sum of angles in a triangle = 180°

\sf \rightarrow\angle BAC+ \angle ABC + \angle ACB = 180 \degree

\sf \rightarrow3x + 2x + x = 180 \degree

\sf \rightarrow6x = 180 \degree

\sf \rightarrow x = \dfrac{180}{6}

\sf \rightarrow x =30 \degree

\sf \rightarrow \angle ACB = x =30 \degree

As we know that the sum of angles on a straight line = 180°

\sf \rightarrow \angle ACB + \angle ACD + \angle ECD

\sf \rightarrow 30 \degree + 90 \degree + \angle ECD = 180 \degree

\sf \rightarrow 120 \degree + \angle ECD = 180 \degree

\sf \rightarrow  \angle ECD = 180 \degree - 120 \degree

\sf \rightarrow  \angle ECD = 60 \degree

Hence;

\large \boxed{ \rm \purple{ \rightarrow \angle ECD = 60 \degree}}
Similar questions