Math, asked by sandhyasubedi285, 10 days ago

anybody knows that k no. answer??it is opt math question ​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: prove =  \\  \frac{1 - tan \:  \beta }{1 + tan \:  \beta }  =  \frac{cot \:  \beta  - 1}{cot \:  \beta  + 1}  \\  \\ so \: let \: LHS =  \frac{1 - tan \: \beta }{1 + tan \:  \beta }  \\  \\ RHS =  \frac{cot \:  \beta  - 1}{cot \:  \beta  + 1}  \\  \\ considering \: LHS \\  =  \frac{1 - tan \:  \beta }{1 + tan \:  \beta }  \\  \\  =  \frac{1 -  \frac{1}{cot \:  \beta } }{1 +  \frac{1}{cot \:  \beta } }  \\  \\  =  \frac{ \frac{ \frac{cot \:  \beta  - 1}{cot \:  \beta } }{cot \:  \beta  + 1} }{cot \:  \beta }  \\  \\  =  \frac{cot \:  \beta  - 1}{cot \:  \beta  + 1}  \\  \\ thus \: LHS=RHS \\ hence \: proved

Similar questions