anybody prove it please
Attachments:
Answers
Answered by
0
Step-by-step explanation:
Given : tanA=2
∴cotA=
tanA
1
=
2
1
∵1+cot
2
A=cosec
2
A
⇒cosec
2
A=1+(
2
1
)
2
=1+
4
1
=
4
5
⇒cosecA=
4
5
=
2
5
Now secAsinA+tan
2
A−cosecA
⇒
cosA
1
sinA+tan
2
A−cosecA∵secθ=
cosθ
1
⇒tanA+tan
2
A−cosecA ∵tanθ=
cosθ
sinθ
⇒2+2
2
−
2
5
⇒2+4−
2
5
⇒6−
2
5
=
2
12−
5
∴ The value of secAsinA+tan
2
A−cosecA=
2
12−
5
mark me as brainlist
Answered by
4
Answer:
TanA[(SecA+1+SecA-1)/(SecA-1)(secA+1)]=0
=TanA(secA)/secA-1= TanA(SecA)/TanA
=SecA/TanA=cosecA
if it is right please make me a brainlist
Similar questions