Math, asked by sujalgupta232326, 1 year ago

anybody who can solve this question​

Attachments:

Answers

Answered by Sharad001
138

Question :-

solve it :

 \to \frac{ { \cos}^{2} \theta }{ { \cot}^{2} \theta -  { \cos}^{2} \theta  }  = 3 \\

Answer :-

\boxed{ \theta =  \frac{ \pi}{3}  \: or \: 60 \degree} \:

Explanation :-

we have ,

 \to \frac{ { \cos}^{2} \theta }{ { \cot}^{2} \theta -  { \cos}^{2} \theta  }  = 3 \\  \\  \to \:  { \cos}^{2}  \theta = 3 { \cot}^{2}  \theta - 3 { \cos}^{2}  \theta \\  \\  \to \:  { \cos}^{2}  \theta + 3 { \cos}^{2}  \theta =  3 { \cot}^{2}  \theta \\ \because \cot \theta =  \frac{ \cos \theta}{ \sin \theta}  \\   \\  \to \: 4 { \cos}^{2}  \theta =3  \frac{ { \cos}^{2} \theta }{ { \sin}^{2}  \theta}  \\  \\   \to \: 4 { \sin}^{2}  \theta = 3 \\  \\  \to \:  { \sin}^{2}  \theta =  \frac{3}{4}  \\  \\ \bf taking \:  \sqrt{} \: on \: both \: sides  \\  \\  \to \sqrt{ { \sin}^{2} \theta }  =   \sqrt{ \frac{3}{4} }  \\  \\  \to \:   \sin \theta =  \frac{ \sqrt{3} }{2}   \:  \:  \because \:  \sin \:  \frac{ \pi}{3}  =  \frac{ \sqrt{3} }{2}  \\  \\  \to \:   \sin \theta =  \sin \frac{ \pi}{3}  \\  \\  \to \boxed{ \theta =  \frac{ \pi}{3}  \: or \: 60 \degree}

Hope it will helps you.

Similar questions