Math, asked by Anonymous, 11 months ago

Anyone answer this???​

Attachments:

Answers

Answered by tahseen619
4

Answer:

{3}^{(2 +  \frac{1}{2n}) }  \\

Step-by-step explanation:

 {( \frac{ {9}^{(n +  \frac{2}{4}) }. \sqrt{3. {3}^{ - n} }  }{3. \sqrt{ {3}^{ - n} } } )}^{ \frac{1}{n} }  \\  \\  {( \frac{ {3}^{2(n +  \frac{1}{2 }  )} . \sqrt{ {3}^{(1 - n)} } }{3. {3}^{ ( - \frac{n}{2} )} } )}^{ \frac{1}{n} }  \\  \\  { (\frac{ {3}^{(2n + 1)} . {3}^{ (\frac{1 -  n }{2} )}  }{ {3}^{(1 -  \frac{n}{2} )} }) }^{ \frac{1}{n} }  \\  \\  {( {3}^{(2n + 1 + \frac{1 - n}{2} ) }. {3}^{ (\frac{n}{2}  - 1)} ) }^{ \frac{1}{n} }  \\  \\ { {3}^{(2n + 1 +  \frac{1}{2}  -  \frac{n}{2} +  \frac{n}{2}  - 1) } } ^{ \frac{1}{n} } \\  \\  { {3}^{(2n +  \frac{1}{2}) } }^{ \frac{1}{n} }  \\  \\  {3}^{(2 +  \frac{1}{2n}) }

If my answer is right then do nothing .

If my answer is wrong then report it.

Answered by ZAYN40
0

 { (\frac{ {9}^{n +  \frac{2}{4}  } . \sqrt{3. {3}^{ - n} } }{3. \sqrt{ {3}^{ - n} } } )}^{ \frac{1}{n} }  \\   \\  {( \frac{ {3}^{2(n +  \frac{1}{2} )} . {3}^{ \frac{1}{2} }. {3}^{ \frac{ - n}{2} }  }{3. {3}^{ \frac{ - n}{2} } }) }^{ \frac{1}{n} }  \\  \\  { (\frac{ {3}^{2n + 1} . {3}^{ \frac{1}{2} } }{3} )}^{ \frac{1}{n} }  \\ \\</p><p> { ({3}^{2n + 1 +  \frac{1}{2} - 1 } )}^{ \frac{1}{n} }  \\ \\  {( {3}^{2n +  \frac{1}{2} }) }^{ \frac{1}{n} }  \\ \\  {3}^{(2 +  \frac{1}{2n} )}

Similar questions