Math, asked by Anonymous, 9 months ago

Anyone answer this??​

Attachments:

Answers

Answered by tahseen619
5

Answer:

0

Step-by-step explanation:

x =  \frac{1}{5 + 2 \sqrt{6} }  \\  \\    \frac{(5 - 2 \sqrt{6}) }{(5 + 2 \sqrt{6} )(5 - 2 \sqrt{6} )}  \\  \\  \frac{5 -  2\sqrt{6} }{ {(5)}^{2} -  {(2 \sqrt{6} )}^{2}  }  \\  \\  \frac{5 - 2 \sqrt{6} }{25 - 4.6}  \\  \\   \frac{5 - 2 \sqrt{6} }{25 - 24}  = 5 - 2 \sqrt{6}

So, x²

 {(5 - 2 \sqrt{6}) }^{2}  \\  \\  {(5)}^{2}  - 2.5.2 \sqrt{6}  +  {(2 \sqrt{6} )}^{2}  \\  \\ 25 - 20 \sqrt{6}  + 24 \\ \\  49 - 20  \sqrt{6}

Now, x² - 10x + 1 =

(49 - 20 \sqrt{6} ) - 10(5 - 2 \sqrt{6} ) + 1 \\  \\  49 - 20 \sqrt{6}  - 50  + 20 \sqrt{6}  + 1  \\ \\ 50 - 50 = 0

If my answer is right then do nothing .

If my answer is wrong then report it .

Answered by ZAYN40
0

Answer:

0

Step-by-step explanation:

x =  \frac{1}{5 + 2 \sqrt{6} }  \\  \\    \frac{(5 - 2 \sqrt{6}) }{(5 + 2 \sqrt{6} )(5 - 2 \sqrt{6} )}  \\  \\  \frac{5 -  2\sqrt{6} }{ {(5)}^{2} -  {(2 \sqrt{6} )}^{2}  }  \\  \\  \frac{5 - 2 \sqrt{6} }{25 - 4.6}  \\  \\   \frac{5 - 2 \sqrt{6} }{25 - 24}  = 5 - 2 \sqrt{6}

So, x²

 {(5 - 2 \sqrt{6}) }^{2}  \\  \\  {(5)}^{2}  - 2.5.2 \sqrt{6}  +  {(2 \sqrt{6} )}^{2}  \\  \\ 25 - 20 \sqrt{6}  + 24 \\ \\  49 - 20  \sqrt{6}

Now, x² - 10x + 1 =

(49 - 20 \sqrt{6} ) - 10(5 - 2 \sqrt{6} ) + 1 \\  \\  49 - 20 \sqrt{6}  - 50  + 20 \sqrt{6}  + 1  \\ \\ 50 - 50 = 0

I hope it will help you.

Similar questions