Math, asked by ajr111, 1 month ago

Anyone answer this..

Attachments:

Answers

Answered by mathdude500
119

Given Question :-

If

 \rm :\longmapsto\:A =  \:  \:  \: \begin{gathered}\sf \left [ \begin{array}{ccc}a&b&c\\x&y&z\\p& q&r\end{array}\right ] \end{gathered}

and

\rm :\longmapsto\:B=  \:  \:  \: \begin{gathered}\sf \left [ \begin{array}{ccc}q& - b&y\\ - p&a& -x\\r& - c&z\end{array}\right ] \end{gathered}

and if A is invertible, which of the following is not true?

 \rm \:  \:  \:  \:  \:  \: (A) \:  \:  |A| =  |B|

 \rm \:  \:  \:  \:  \:  \: (B) \:  \:  |A| =  -  \:  |B|

 \rm \:  \:  \:  \:  \:  \: (C) \:  \:  |adjA| \:  = \:  |adjB|

 \rm \:  \:  \:  \:  \:  \: (D) \:  \: A \: is \: invertible \: iff \: B \: is \: invertible

\large\underline{\sf{Solution-}}

Given matrices are

 \rm :\longmapsto\:A =  \:  \:  \: \begin{gathered}\sf \left [ \begin{array}{ccc}a&b&c\\x&y&z\\p& q&r\end{array}\right ] \end{gathered}

and

\rm :\longmapsto\:B=  \:  \:  \: \begin{gathered}\sf \left [ \begin{array}{ccc}q& - b&y\\ - p&a& -x\\r& - c&z\end{array}\right ] \end{gathered}

Now, Consider,

\rm :\longmapsto\: |B|

\:  \: \rm \:  =  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}q& - b&y\\ - p&a& -x\\r& - c&z\end{array}\right | \end{gathered}

\red{ \boxed{ \sf{ \:OP \: C_2 \:  \to \:  - 1(C_2)}}}

\:  \: \rm \:  =  \:   - \: \begin{gathered}\sf \left | \begin{array}{ccc}q&b&y\\ - p& - a& -x\\r&c&z\end{array}\right | \end{gathered}

\red{ \boxed{ \sf{ \:OP \: R_2 \:  \to \:  - 1(R_2)}}}

\:  \: \rm \:  =  \: ( - 1)( - 1) \: \begin{gathered}\sf \left | \begin{array}{ccc}q&b&y\\ p&a&x\\r&c&z\end{array}\right | \end{gathered}

\:  \: \rm \:  =  \:\: \begin{gathered}\sf \left | \begin{array}{ccc}q&b&y\\ p&a&x\\r&c&z\end{array}\right | \end{gathered}

\red{ \boxed{ \sf{ \:OP \: R_2 \leftrightarrow \: R_1}}}

\:  \: \rm \:  =  \:  -  \: \begin{gathered}\sf \left | \begin{array}{ccc}p&a&x\\ q&b&y\\r&c&z\end{array}\right | \end{gathered}

\red{ \boxed{ \sf{ \:OP \: C_2 \leftrightarrow \: C_1}}}

\:  \: \rm \:  =  \: ( - 1)( - 1) \: \begin{gathered}\sf \left | \begin{array}{ccc}a&p&x\\ b&q&y\\c&r&z\end{array}\right | \end{gathered}

\:  \: \rm \:  =  \:\: \begin{gathered}\sf \left | \begin{array}{ccc}a&p&x\\ b&q&y\\c&r&z\end{array}\right | \end{gathered}

We know,

\red{ \boxed{ \sf{ \: |A| =  | {A}^{T} | }}}

\:  \:  =  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}a&b&c\\p&q&r\\x& y&z\end{array}\right | \end{gathered}

\red{ \boxed{ \sf{ \:OP \: R_2 \leftrightarrow \: R_1}}}

\:  \:  =  \:   - \: \begin{gathered}\sf \left | \begin{array}{ccc}a&b&c\\x&y&z\\p& q&r\end{array}\right | \end{gathered}

\rm \:  =  \:  -  |A|

\bf\implies \: |B|  \: =  -  \:  |A|

  • So, option (A) is not true.

Reason :- Why other Options are correct.

Option C is correct.

As,

\rm :\longmapsto\:adjA =  { |A| }^{n - 1} =    { |A| }^{2} =  {( -  |B|) }^{2} =  { |B| }^{2} = adjB

Option D is correct

As given that, A is invertible

\bf\implies \: |A|  \ne \: 0

\bf\implies \: |B|  \ne \: 0

\bf\implies \:B \: is \: invertible

and vice - versa.

Additional Information :-

1. The determinant value remains unaltered if rows and columns are interchanged.

2. The determinant value is 0, if two rows or columns are identical.

3. The determinant value is multiplied by - 1, if successive rows or columns are interchanged.

4. The determinant value remains unaltered if rows or columns are added or subtracted.

Answered by gc523739
1

Hey kotha account lo question post chesa answer chey

Similar questions