Math, asked by 1223338, 8 months ago

ANYONE ANSWER THIS ONE : I'll follow that person and mark the best answer brainliest​

Attachments:

Answers

Answered by shivangidas2009
1

Step-by-step explanation:

p(x)=ax^2+(a+b)x+b=0

=>ax^2+ax+bx+b=0

=>ax(x+1)+b(x+1)=0

=>(ax+b)(x+1)=0

Either,

ax+b=0

=>x= -b/a

or

x+1=0

=>x= -1

Therefore, the roots are -b/a and -1

Answered by Anonymous
7

Answer:

 \alpha  =  \frac{ - b}{a}  \\  \\  \\  \beta  =  - 1

Step-by-step explanation:

p(x) = a {x}^{2}  + (a + b)x + b \\  \\ Quadratic  \: Formula =  \frac{ - b  \: +  - \sqrt{ D}  }{2a}  \\  \\  \sqrt{D}  =  \sqrt{ {b}^{2}  - 4ac}  \\  \\  \\ Here \\a  = a \\ b = a + b \\ c = b \\  \\  \\  \sqrt{ D} =  \sqrt{ {b}^{2}  - 4ac}  \\  \\  \sqrt{D } =  \sqrt{(a + b) ^{2}  - 4 \times a \times b}  \\  \\ \sqrt{D }  =  \sqrt{ {a }^{2} +  {b}^{2}  + 2ab - 4ab}  \\  \\ \sqrt{D } =  \sqrt{ {a}^{2} +  {b}^{2}    - 4ab}  \\  \\ \sqrt{D }  =  \sqrt{(a -  {b})^{2} }  \\  \\ \sqrt{D }  =  \sqrt{(a - b)(a - b)}  \\  \\ \sqrt{D }  = a - b \\  \\  \\  \\  \alpha  =   \frac{ - b +\sqrt{D } }{2a}  \\  \\  \alpha  =   \frac{ - (a + b) + a  -  b}{2a}  \\  \\  \alpha   =  \frac{ - a - b +a  -  b }{2a}  \\  \\  \alpha  =  \frac{ - 2b}{2a}  \\  \\  \alpha  =  \frac{ - b}{a}  \\  \\  \\  \\  \beta  = \frac{ - b  - \sqrt{D } }{2a}  \\  \\  \beta  =  \frac{ - (a + b)  - ( a  -  b)}{2a} \\  \\  \beta  =  \frac{ - a - b - a + b}{2a}  \\  \\  \beta  =  \frac{ - 2a}{2a}  \\  \\  \beta  =  - 1

HOPE IT HELPS YOU

THANKS !

Similar questions