Anyone can explain quantum theory ?????
Answers
Explanation:
Quantum theory is the theoretical basis of modern physics that explains the nature and behavior of matter and energy on the atomic and subatomic level. ... Planck wrote a mathematical equation involving a figure to represent these individual units of energy, which he called quanta.Quantum physics is usually just intimidating from the get-go. It’s kind of weird and can seem counter-intuitive, even for the physicists who deal with it every day. But it’s not incomprehensible. If you’re reading something about quantum physics, there are really six key concepts about it that you should keep in mind. Do that, and you’ll find quantum physics a lot easier to understand.
Everything Is Made Of Waves; Also, ParticlesThere’s lots of places to start this sort of discussion, and this is as good as any: everything in the universe has both particle and wave nature, at the same time. There’s a line in Greg Bear’s fantasy duology (The Infinity Concerto and The Serpent Mage), where a character describing the basics of magic says “All is waves, with nothing waving, over no distance at all.” I’ve always really liked that as a poetic description of quantum physics– deep down, everything in the universe has wave nature.
Of course, everything in the universe also has particle nature. This seems completely crazy, but is an experimental fact, worked out by a surprisingly familiar process:there’s also an animated version of this I did for TED-Ed).
Of course, describing real objects as both particles and waves is necessarily somewhat imprecise. Properly speaking, the objects described by quantum physics are neither particles nor waves, but a third category that shares some properties of waves (a characteristic frequency and wavelength, some spread over space) and some properties of particles (they’re generally countable and can be localized to some degree). This leads to some lively debate within the physics education community about whether it’s really appropriate to talk about light as a particle in intro physics courses; not because there’s any controversy about whether light has some particle nature, but because calling photons “particles” rather than “excitations of a quantum field” might lead to some student misconceptions. I tend not to agree with this, because many of the same concerns could be raised about calling electrons “particles,” but it makes for a reliable source of blog conversations.
This “door number three” nature of quantum objects is reflected in the sometimes confusing language physicists use to talk about quantum phenomena. The Higgs boson was discovered at the Large Hadron Collider as a particle, but you will also hear physicists talk about the “Higgs field” as a delocalized thing filling all of space. This happens because in some circumstances, such as collider experiments, it’s more convenient to discuss excitations of the Higgs field in a way that emphasizes the particle-like characteristics, while in other circumstances, like general discussion of why certain particles have mass, it’s more convenient to discuss the physics in terms of interactions with a universe-filling quantum field. It’s just different language describing the same mathematical object.