Math, asked by Anonymous, 8 months ago

Anyone can solve this ​

Attachments:

Answers

Answered by amansharma264
21

EXPLANATION.

 \sf :  \implies \:  \: equation \: are \:  \\  \\ \sf :  \implies \:  \: y {}^{  \cot(x)  }  + ( \tan {}^{ - 1} x ) {}^{y}  = 1 \:  \: then \: find \:  \frac{dy}{dx}

\sf :  \implies \:  \: let \: we \: assume \: that \:  \\  \\ \sf :  \implies \:  \: u \:  = y {}^{ \cot(x) } \\  \\\sf :  \implies \:  \: v \:  \:  =  (\tan {}^{ - 1}  \: x) {}^{y}

 \sf :  \implies \:  \: differentiate \: both \: side \: and \: add \: log \: on \: both \: sides

\sf :  \implies \:  \: u \:  =   \cot(x) \\  \\   \sf :  \implies \:  \:  \frac{1}{u} . \frac{du}{dx}  =  \cot(x). \frac{1}{y}. \frac{dy}{dx} +  log(y).( -  \csc {}^{2} (x)) \\  \\   \sf :  \implies \:  \:  \frac{du}{dx}  = y {}^{ \cot(x) } \Bigg( \frac{ \cot(x) }{y} . \frac{dy}{dx} - ( \csc {}^{2} (x)  log(y) \Bigg) \:  \: ....(1)

 \sf :  \implies \:  log(v)  = y log( \tan {}^{ - 1} x ) \\  \\  \sf :  \implies \:  \frac{1}{v}. \frac{dv}{dx} = y. \frac{1}{ \tan {}^{ - 1} (x) }. \frac{1}{1 +  {x}^{2} } +  log( \tan {}^{ - 1}x). \frac{dy}{dx}  \\  \\   \sf :  \implies \:  \frac{dv}{dx} = ( \tan {}^{ - 1} (x) \Bigg( \frac{y}{(1 +  {x}^{2}) \tan {}^{ - 1} )x }  +  log( \tan {}^{ - 1} x )  . \frac{dy}{dx} \Bigg)...(2)

 \sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \: get

 \sf :  \implies \:  \dfrac{du}{dx}  +  \dfrac{dv}{dx}  = 0

\sf :  \implies \:  \dfrac{dy}{dx} =  \dfrac{y {}^{ \cot \: (x) } . \csc {}^{2} (x) . log(y) -  \Bigg( \dfrac{ \tan {}^{ - 1} (x) {}^{y - 1}  .y}{1 +  {x}^{2} }  \Bigg) }{y {}^{ \cot(x) - 1 } . \cot(x) + ( \tan {}^{ - 1} (x) {}^{y}. log( \tan {}^{ - 1} x )    }

Similar questions